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Chapter 2

Time

Time is the primary independent variable in GMAT.
Time is used in integrating the equations of motion, and
calculating planetary ephemerides, the orientations of plan-
ets and moons, and atmospheric density among others.
GMAT uses three types of time systems depending on
the type of calculations being performed: universal time
systems based on the Earth’s rotation with respect to the
Sun; dynamic time systems that are based on the dy-
namic motion of the solar system and take into account
relativistic effects; and atomic time systems based on the
oscillation of the cesium atom. Each of these time sys-
tems has specific uses and is discussed below. In addition,
universal, dynamic, and atomic time systems can be ex-
pressed in different time formats. The two time formats
used in GMAT are the Modified Julian Date (MJD) for-
mat, and the Gregorian Date (GD) format. In the next
section, we’ll take a look at the time systems used in
GMAT, and when GMAT uses each time system. Then
we’ll look at the different time formats.

2.1 Time Systems

GMAT uses several different time systems in physical
models and spacecraft dynamics modelling. The choice
of time system for a particular calculation is determined
by which time system is most natural and convenient,
as well as the accuracy required. In general, for deter-
mining Earth’s orientation at a given epoch, we use one
of several forms of Universal Time (UT), because uni-
versal time is based on the Earth’s rotation with respect
to the Sun. Planetary ephemerides are usually provided
with time in a dynamic time system, because dynamic
time is the independent variable in the dynamic theories
and ephemerides. The independent variable in spacecraft
equations of motion in GMAT is time expressed in an
atomic time system. Let’s look at each of these three
systems, starting with atomic time.

2.1.1 Atomic Time: TAI and A.1

Atomic time (AT) is a highly accurate time system which
is independent of the rotation of the Earth.1 Therefore,
AT is a natural system for integrating a spacecraft’s equa-
tions of motion. AT is defined in terms of the oscillations
of the cesium atom at mean sea level. The duration of
the SI second is defined to be 9,192,631,770 oscillations of
the cesium nuclide 133Ce. Two atomic times systems are
are used in GMAT: A.1, and international atomic time
(TAI). A.1 is in advance of TAI by 0.0343817 seconds.

A.1 = TAI + 0.0343817sec (2.1)

where
TAI = UTC + ∆AT (2.2)

and ∆AT is the number of leap seconds, added since 1972,
needed to keep | UTC − UT 1 |≤ 0.9sec. GMAT reads
∆AT from the file named tai-utc.dat. For times that ap-
pear before the first epoch on the file, GMAT uses the
first value found in the file. For times that appear after
the last epoch, GMAT uses the last value contained in the
file. Currently, GMAT uses A.1 time as the independent
variable in the equations of motion. TAI is used as a time
system for defining spacecraft state information.

Now let’s look at the universal time system.

2.1.2 Universal Time: UTC and UT1

All of the universal time (UT) scales are based on the
Earth’s rotation with respect to a fixed point (sidereal
time) or with respect to the Sun (solar time). The ob-
served universal time (UTO) is determined from observa-
tions of stellar transits to determine mean local sidereal
time. UT1 is UTO corrected for the Earth’s polar mo-
tion and is used when the instantaneous orientation of the
Earth is needed. UTC is the basis for all civil time stan-
dards. It is also known as Greenwich mean time (GMT)
and Zulu time (Z). The UTC time unit is defined to be
an SI second, but UTC is kept within 0.9 seconds of UT1
by occasional leap second adjustments. The equation re-
lating UTC and UT1 is

UTC = UT 1 − ∆UT 1 (2.3)

11
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In GMAT, ∆UT 1 is read from the file eopc04.62-now pro-
vided by the International Earth Rotation and Reference
Systems Service (IERS). The file containing the latest
measurements and predictions can be found at
http://www.iers.org/. For times past the last epoch con-
tained in the file, GMAT uses the last value of ∆UT 1
contained in the file. GMAT uses UTC as a time system
to define spacecraft state information. UT1 is used to
determine the Greenwich hour angle and for the sidereal
time portion of FK5 reduction.

2.1.3 Dynamic Time: TT, TDB and TCB

Dynamical time is the independent variable in the dy-
namical theories and ephemerides. This class of time
scales contains terrestrial time (TT), Barycentric Dynam-
ical time (TDB), and Barycentric Coordinate Time (TCB).
TDB is the independent variable in the equations of mo-
tion referred to the solar system barycenter. It is also the
coordinate time in the theory of general relativity. De-
spite the fact that the Jet Propulsion Laboratory (JPL)
J2000.0 ephemerides are referred to in TDB, TT is fre-
quently used. This is because TT and TDB always differ
by less than 0.002 sec. As higher accuracy or more sensi-
tive missions are planned, the difference may need to be
distinguished. In this section we’ll discuss how to calcu-
late TT, TDB and TCB, and discuss where each is used
in GMAT.

TT is the independent variable in the equations of
motion referred to the Earth’s center. It is also the proper
time in the theory of general relativity. The unit of TT is
a day of 86400 SI seconds at mean sea level. In GMAT,
TT is used in FK5 reduction, and as an intermediate time
system in the calculation of TDB and TCB. TT can be
calculated from the following equation:

TT = TAI + 32.184 sec (2.4)

Calculating TDB exactly is a complicated process that
involves iteratively solving a transcendental equation. For
this reason, it is convenient to use the following approxi-
mation

TDB ≈ TT + 0.001658 sinME + 0.00001385 sin2ME
︸ ︷︷ ︸

units of seconds
(2.5)

Note that the term in the underbrace has units of seconds,
and depending upon the units of TT , which is usually
in days, a conversion of the term may be necessary be-
fore performing the addition with TT . ME is the Earth’s
mean anomaly with respect to the sun and is given ap-
proximately as

ME ≈ 357.5277233+ 35, 999.05034TTT (2.6)

where TTT is the time in TT expressed in the Julian Cen-
tury format. TTT can be calculated from

TTT =
JDTT − 2, 451, 545.0

36, 525
(2.7)

where JDTT is the time in TT expressed in the Julian
Date format. For a more complete discussion of the TDB
time system, see Vallado1 (pp. 195-198) and Seidelmann2

(pp. 41-48). GMAT uses TDB as the default time system
in the JPL ephemerides files. There is an option to use TT
in the ephemerides using the UseTTForEphemeris flag.

The last dynamic time system GMAT uses is Barycen-
tic Coordinate Time. In 1992, the IAU adopted this sys-
tem and clarified the relationships between space-time co-
ordinates.2 In general, calculating TCB requires a four-
dimensional space-time transformation that is well be-
yond the scope of this discussion. However, TCB can be
approximated using the following equation:

TCB − TDB = LB(JD − 2443144.5)86400 (2.8)

The present estimate of the value of LB is 1.550505x10−8

(+/ − 1x10−14) (Fukushima et al., Celestial Mechanics,
38, 215, 1986). It is important to note that the main dif-
ference between TDB and TCB is a secular drift, and that
as of the J2000 Epoch, the difference was approximately
11.25 seconds and growing.3 GMAT uses time in the
TCB system to evaluate the IAU data for the spin axes
and prime meridian locations of all planets and moons ex-
cept for Earth.4 Note that Seidelmann4 mistakenly says
that time in TCB should be used in the equations given
for the pole and meridian locations of the planets. The
correct time to use is TDB, and GMAT uses this time
system.

2.2 Time Formats

There are two time formats that GMAT uses to repre-
sent time in the systems discussed above. These formats
are called the Gregorian Date (GD), and the Julian Date
(JD). The difference between the GD and JD formats is
how they represent the Year, Month, Day, Hours, Min-
utes, and Seconds of a given date. The GD format is
well known, and the J2000 epoch is expressed as, 01 Jan
2000 12:00:00.000 TT. The reference epoch for the GD
calendar is the beginning of the Christian Epoch. The
JD format represents an epoch as a continuous number
containing the day and the fraction of day.

The J2000 epoch is commonly used in astrodynamics
as a reference epoch for planetary and other data. The
J2000 epoch occurred at 01 Jan 2000 12:00:00.000 TT.
The time system, TT, is important for precise applica-
tions! While the J2000 epoch is a specific instant in time,
the numerical value changes depending upon which time
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system you express it in. We can make an analogy with
vector algebra where we have an abstract quantity that
is a vector, and can’t write down a set of numbers rep-
resenting the vector until we choose a coordinate system.
Similarly, the J2000 epoch can be written in any of the
different time systems and formats. All of the following
are equivalent definitions of the J2000 Epoch:

2451545.0 TT

2451544.9996274998411 TAI

2451544.9992571294708 UTC

2451544.9999999990686 TDB

01 Jan 2000 12 : 00 : 00.000 TT

01 Jan 2000 11 : 59 : 27.815986276 TAI

01 Jan 2000 11 : 59 : 55.815986276 UTC

01 Jan 2000 11 : 59 : 59.999919534 TDB

In the next two sections we’ll look at how to convert
an epoch in a given time system from the GD format to
the JD format, and vice versa.

2.2.1 Julian Date and Modified Julian Date

The Julian date is a time format in which we can express a
time known in any of the Atomic, Universal or Dynamic
time systems. The Julian Date is composed of the Ju-
lian day number and the decimal fraction of the current
day. Seidelmann2 (pp. 55-56) says “The Julian day num-
ber represents the number of days that has elapsed, at
Greenwich noon on the day designated, since ...the epoch
noon Jan 1 4713 B.C. in the Julian proleptic calendar.
The Julian date (JD) corresponding to any instant is, by
simple extension to this concept, the Julian day number
followed by the fraction of the day elapsed since the pre-
ceding noon”.

The fundamental epoch for most astrodynamic calcu-
lations is the J2000.0 epoch.2 This epoch is GD 01 Jan
2000 12:00:00.000 in the TT time system and is expressed
as JD 2451545.0 TT. To convert between Julian Date for-
mat and Gregorian Date format, GMAT uses Algorithm
14 from Vallado1

JD = 367Y − Int
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(
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))
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275M
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)
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60
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60
+H

24

(2.9)

where Y is the four digit year, Int signifies real trun-
cation, and M , D, H , m and s are month, day, hour,

minutes, and seconds respectively. This equation is valid
for the time period 01 Mar. 1900 to 28 Feb. 2100.

For numerical reasons it is often convenient to work in
a Modified Julian Date (MJD) format to ensure we can
capture enough significant figures using double precision
computers. In GMAT the MJD system is defined as

MJD = JD − 2, 430, 000.0 (2.10)

where the reference epoch expressed in the GD format is
05 Jan 1941 12:00:00.000. However, we must be careful
in calculating the Modified Julian Date, or we will lose
the precision we are trying to gain. GMAT calculates the
MJD as follows:

JDay =367Y − Int
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+D + 1, 721, 013.5− 2, 430, 000.0

(2.11)

PartofDay =

s

60
+m

60
+H

24
(2.12)

MJD = (JDay − 2, 430, 000.0) + PartofDay (2.13)

The important subtlety is that we must subtract the MJD
reference from the JD, before we add the fraction of day,
to avoid losing precision in the MJD.

2.2.2 Gregorian Date

The Gregorian Date format is primarily used as a time
system in which to enter state information in GMAT. GD
is not a convenient time format for most mathematical
calculations. Hence, GMAT often takes input in the GD
format and converts it to a MJD format for use internally.
The algorithm for converting from GD to MJD is taken
from Vallado1 and reproduced here verbatim.

T1900 =
JD − 2, 415, 019.5

365.25

Y ear = 1900 + TRUNC(T1900)

LeapY rs = TRUNC((Y ear − 1900− 1)(0.25))

Days = (JD − 2, 415, 019.5)−
((Y ear − 1900)(365.0) + LeapY rs)

IFDays < 1.0 THEN
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Y ear = Y ear − 1

LeapY rs = TRUNC((Y ear − 1900− 1)(0.25))

Days = (JD − 2, 415, 019.5)−
((Y ear − 1900)(365.0) + LeapY rs)

If (Year Mod 4) = 0 Then

LMonth[2] = 29

DayofY r = TRUNC(Days)

Sum days in each month until
LMonth + 1 summation > DayofYr

Mon = # of months in summation

Day = DayofY r − LMonth summation

τ = (Days−DayofY r)24

h = TRUNC(Temp)

min = TRUNC((Temp− h)60)

s =

(

Temp− h− min

60

)

3600

2.3 Conclusions

In this chapter we looked at three time systems that
GMAT uses to perform internal calculations: atomic time,
universal time, and dynamic time. Atomic time is used
to integrate spacecraft equations of motion, while univer-
sal time is used to determine the sidereal time and green-
which hour angle for use in FK5 reduction. Dynamic time
systems are used in the JPL ephemerides and in the IAU
planetary orientation data. Time, in any of these time
systems, are represented in two formats: the Gregorian
Date, and Julian Date. We looked at how to convert be-
tween different time systems, and between different time
formats.
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Chapter 3

Coordinate Systems

There are numerous coordinate systems used in space
mission analysis, that when used appropriately can greatly
simplify the work and yield insight that is not obvious
otherwise. Some examples are equatorial and ecliptic sys-
tems, and rotating coordinate systems based on the rel-
ative motion of two bodies such as the Earth and Moon.
GMAT has the capability to calculate many parameters
in different coordinate systems, and these parameters can
then be used in plots, reports, solvers, control flow state-
ments and stopping conditions to name a few.

In this chapter we investigate how GMAT performs
coordinate system transformations, and how different co-
ordinate systems are defined. We begin by defining some
notation. Next, we look at how to transform a vector and
its first derivative from one coordinate system to another
when the coordinate systems are translating and rotating
with respect to one another. Finally, we look at each co-
ordinate system defined in GMAT and discuss how to find
its rotation matrix and the first derivative of the rotation
matrix to rotate to the J2000 coordinate system.

3.1 General Coordinate System

Transformations

GMAT has the capability to take a position and veloc-
ity vector in one coordinate system, and convert them to
another coordinate system that may be both translating
and rotating with respect to the original system. In this
section we derive the equations governing coordinate sys-
tem transformations and describe the algorithm GMAT
uses to transform position and velocity vectors.

Let’s start by defining some notation. In Fig. 3.1,
we see an illustration of a point o drawn with respect to
two coordinate systems Fi and Ff . The vector ro

i is the
position vector of point o with respect to frame Fi. The
vector ro

f is the position vector of point o with respect to
Ff . rfi is the vector from the origin of Fi to Ff . Let’s
define the rotation matrix that rotates from Fi to Ff as
Rfi. Finally, let’s define the angular velocity ωfi as the
angular velocity of Fi with respect to Ff . To simplify

the notation, we assume that a vector is expressed in the
frame denoted by the right-most subscript. If we need
to express a vector in another coordinate system, we use
curly brackets. As an example, {ro

i }f is the position of
point o, with respect to frame Fi, expressed in frame Ff .
In summary, we have

ro
i Position vector of point o w/r/t frame Fi

expressed in Fi

{ro
i }f Position vector of point o w/r/t frame Fi

expressed in Ff

rfi Position vector from origin of Fi to origin
of Ff expressed in Ff

Rfi Rotation matrix from frame Fi to Ff

ωfi Angular velocity of frame Fi w/r/t Ff ,
expressed in frame Fi

{ωfi}f Angular velocity of frame Fi w/r/t Ff ,
expressed in frame Ff

To further simplify the notation, let’s drop the su-
perscript “o” from ro

i and ro
f . Then, from inspection of

Figure 3.1 we can write

rf = Rfiri
︸ ︷︷ ︸

Rot.

+ rif
︸︷︷︸

Trans.

(3.1)

Equation (3.1) is the equation used to convert a vector
known in frame Fi to a vector in frame Ff , where both a
rotation and a translation are required. The first term in
Eq. (3.1) is the term that performs the rotation portion of
the transformation. Here, ri is the position vector w/r/t
to Fi and is expressed in Fi. Rfi is the rotation matrix
that rotates from Fi to Ff . rif is the vector that goes
from the origin of Ff to the origin of Fi, and is expressed
in Ff .

We also need to be able to determine the time rate
of change of a vector in frame Ff if we know the time
rate of change of the vector in Fi. To determine the
equation that describes the transformation, we must take
the derivative of Eq. (3.1) with respect to time.

drf

dt
=
dRfiri

dt
+
drif

dt
(3.2)

15
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Fi

Ff

ri

rif

rf

o

Figure 3.1: Illustration of a Translating and Rotating Coordinate System

Let’s use a single dot above a variable to denote the first
derivative of that variable with respect to time. Then, we
can expand this to obtain

ṙf = Ṙfiri + Rfiṙi + ṙif (3.3)

In Eq. (3.3) we see a term that contains the time deriva-
tive of the rotation matrix from Fi to Ff . We can write
the time derivative of Rfi as

Ṙfi = Rfiω
x
fi = {ωx

fi}fRfi (3.4)

where ωfi is the angular velocity of Fi with respect to
Ff expressed in Fi. The skew symmetric matrix, ω

x, is
defined as

ω
x =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (3.5)

In summary, using Eq. (3.4) to transform a derivative
vector from Fi to Ff we can use any of the following
three equations:

ṙf = Rfiω
x
firi + Rfiṙi

︸ ︷︷ ︸

Rot.

+ ṙif
︸︷︷︸

Trans.

(3.6)

ṙf = {ωx
fi}fRfiri + Rfiṙi

︸ ︷︷ ︸

Rot.

+ ṙif
︸︷︷︸

Trans.

(3.7)

ṙf = Ṙfiri + Rfiṙi
︸ ︷︷ ︸

Rot.

+ ṙif
︸︷︷︸

Trans.

(3.8)

We choose between Eqs. (3.6), (3.7), or (3.8) depending
on the type of information we have, and which frame is
most convenient to express the angular velocity ωfi in.
In general, we know ri and ṙi. To perform the transfor-
mation we need to determine R, Ṙ, and ṙif and these
quantities depend on Fi and Ff .

One of the difficulties in implementing coordinate sys-
tem transformations in GMAT is that we often can’t cal-
culate Rfi and Ṙfi directly. For example, it is nontrivial
to directly calculate the rotation matrix from the Earth
fixed frame to the Moon fixed frame. Hence, we need to
choose a convenient intermediate coordinate system. We
choose the axis system defined by Earth’s mean equinox
and mean equator at the J2000 epoch, denoted FJ2k

, as
the intermediate reference frame for all transformations
that require an intermediate transformation. This choice
is motivated by the fact that most of the data needed to
calculate R and Ṙ is given so that it is fast and convenient
to calculate RJ2k,i, and ṘJ2k,i.

The steps taken to perform a general coordinate trans-
formation in GMAT are described below and illustrated
in Fig. 3.2. We start with a vector and its first derivative
known in frame Fi, and wish to determine the vector and
its first derivative with respect to frame Ff . However, we
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assume that the transformation to go directly from Fi to
Ff is not known.

The first step in the process is to perform a rotation
from Fi to FJ2k

. We define this intermediate system as
F1. No translation is performed in step one. Using only
the rotation portions of from Eqs. (3.1) and (3.8) we see
that

{ri}1 = RJ2k,iri (3.9)

{ṙi}1 = ṘJ2k,iri + RJ2k,iṙi (3.10)

The second step is to perform a translation from the origin
of Fi to the origin of Ff . We define this second interme-
diate system as F2. F2 has the same origin as Ff but has
the same axes as FJ2k

. From inspection of Fig.3.2 we can
see that

{ri}1 = {rRi}J2k
+ {rfR}J2k

+ {rf}2 (3.11)

Solving for rf we obtain

{rf}2 = {ri}1 − {rRi}J2k
− {rfR}J2k

(3.12)

where {rRi}J2k
is the vector from the origin of Fi to the

origin of FR expressed in FJ2k. Similarly {rfR}J2k
is the

vector from the origin of FR to the origin of Ff expressed
in FJ2k. Because the vector {rf}2 is expressed in an iner-
tial system we can we can take the derivative of Eq .(3.12)
to obtain

{vf}2 = {vi}1 − {vRi}J2k
− {vfR}J2k

(3.13)

where {vRi}J2k
is the velocity of the origin of FR w/r/t

the origin of Fi. Similarly, {vfR}J2k
is the velocity of the

origin of Ff w/r/t the origin of FR. Finally, we perform a
rotation from FJ2k

to Ff about the origin of Ff to obtain
the desired quantities.

rf = Rf,J2k
{vf}2 (3.14)

ṙf = Ṙf,J2k
{rf}2 + Rf,J2k

{vf}2 (3.15)

3.2 Pseudo-Rotating Coordinate

Systems

In mission analysis, sometimes it is useful to consider a ro-
tating coordinate system to be inertial at a given instant
in time. In this case, we ignore the effects of rotation
on the velocity. Let’s call systems where we neglect the
rotational effects on velocity pseudo-rotating coordinate
systems.

To perform transformations to a pseudo-rotating coor-
dinate system, the equations to convert a position vector
do not change and are given by Eqs. (3.9) and (3.14).

However, the velocity conversion equations change be-
cause we neglect the terms that contain Ṙ. For pseudo-
rotating coordinate systems the velocity transformations
shown in Eqs. (3.10) and (3.15) become

{
dri

dt

}

1

= RJ2k,i
dri

dt
(3.16)

and
drf

dt
= Rf,J2k

{vf}2 (3.17)

To perform the transformations describe in the last
few sections, we need to be able to calculate the rotation
matrix between any coordinate system and FJ2k

, and the
derivative of the rotation matrix. In the following sec-
tions we calculate these matrices for the systems used
in GMAT. We assume that we want the transformation
from some generic frame Fi to FJ2k

which is the Earth
Mean J2000 Equatorial (MJ2000Eq) system. The rota-
tion matrix from FJ2k

to Fi can be found by the simple
relationship.

Ri,J2k
= R−1

J2k,i = RT
J2k,i (3.18)

and

Ṙif = Ṙ−1
J2k,i = ṘT

J2k,i (3.19)

3.3 The FJ2k
Inertial System and

FK5 Reduction

It is well know that Newton’s laws must be applied in an
inertial system. The struggle to determine a truly inertial
system has continued since Newton’s time. In reality, the
best we can do is approximate a truly inertial system in
which to apply Newton’s laws. In GMAT that system is
the FK5 system, here called FJ2k

. The FJ2k
system is

referenced to the Earth’s equator and the Earth’s orbit
about the sun. Because neither of these two planes are
fixed in space, we must pick an epoch and define an in-
ertial system based on the geometry at that epoch. This
epoch is commonly chosen as the J2000 epoch. In this
section, we present the definition of the FJ2k

system, and
discuss the transformation from FJ2k

to the Earth Fixed
system. This transformation is called FK5 reduction. We
begin with a conceptual discussion of how the Earth’s
spin axis moves with respect to inertial space. We con-
clude this section with a presentation of the mathematical
theory of FK5 reduction.

3.3.1 Overview of FK5 Reduction

The inertial system most commonly used in astrodynam-
ics as of this writing is the FK5 system. We call this
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Fi
Ff

F2

J2k

F1

ri
rf

rRi rfR

Figure 3.2: General Coordinate System Transformation Approach in GMAT

system FJ2k
. The FJ2k

system is used for many calcu-
lations in GMAT. The two most important are for inte-
grating equations of motion, and as an intermediate sys-
tem for coordinate system transformation. FJ2k

is used
throughout the astrodynamics community as the coordi-
nate system to represent time varying data such as plane-
tary ephemerides and planetary pole and prime meridian
locations.

The rigorous mathematical definition of FJ2k
is com-

plex. So, let’s start with a simple qualitative explana-
tion. The nominal z-axis of FJ2k

is normal to the Earth’s
equatorial plane. The nominal x-axis points along the
line formed by the intersection of the Earth’s equatorial
plane and the ecliptic plane, in the direction of Aries.
The nominal y-axis completes the right-handed system.
Both the equatorial and ecliptic planes move slowly with
respect to inertial space. The rigorous definition of FK5
uses the mean planes of the ecliptic and equator, at the
J2000 epoch. We’ll take a closer look at the mathematical
definitions of the mean ecliptic and equator below.

FK5 reduction is the transformation that rotates a
vector expressed in the FJ2k

system to the Earth Fixed
coordinate system. To perform this transformation obvi-
ously requires an understanding of how the Earth’s ori-
entation changes with respect to FJ2k

. The time varying
orientation of the Earth is complex and is due to com-
plicated interactions between the Earth and it’s external
environment and complicated internal dynamics. In fact,
the dynamic orientation of the Earth is so complicated
that we can’t model it completely and FK5 reduction is

a combination of dynamics models and empirical obser-
vations that are updated daily.

We describe the orientation of the Earth using three
types of motion. The first type, including precession and
nutation, describes how the Earth’s principal moment of
inertia moves with respect to inertial space.2 The motion
is illustrated in Fig. 3.3. The principal moment of inertia
is defined as the Celestial Ephemeris Pole, and due to the
fact that Earth’s mass distribution changes with time, the
Celestial Ephemeris Pole is not constant with respect to
the Earth’s surface. Precession is the coning motion that
the Celestial Ephemeris Pole makes around the ecliptic
north pole. The other principal component of the mo-
tion of the Celestial Ephemeris Pole is commonly called
nutation and is the oscillation in the angle between the
Celestial Ephemeris Pole and the north ecliptic pole. The
theory of Precession and Nutation come from dynamics
models of the Earth’s motion. The second type of motion
is called sidereal time, and represents a rotation about the
Celestial Ephemeris Pole. The sidereal time model is a
combination of theory ad observation. The third motion
is that of the Earth’s instantaneous spin axis with respect
to the Earth’s surface. As, we’ll see below, the Earth’s
spin axis is not constant with respect to the Earth’s crust
and it’s motion is called Polar Motion. A portion of polar
motion is due to complicated dynamics, and a portion is
due to unmodelled errors in nutation. Polar motion is
determined from observation. Now that we’ve had a brief
introduction to precession, nutation, sidereal time, and
polar motion, let’s look at each in more detail.
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Precession

As we mentioned above, precession is the coning motion
of the Celestial Ephemeris Pole about the ecliptic north
pole and is illustrated in Fig 3.3. The motion is caused by
two primary effects. The first is the motion of the ecliptic
plane due to the gravitational effects of the Sun, Moon,
and planets on the Earth’s orbit, and is called planetary
precession. If the Earth’s equator were fixed in inertial
space, the effects of planetary precession would cause a
precession of the equinox of about 12” per century and
a decrease in the obliquity of the ecliptic of about 47”
per century.2 The second cause of precession is due to
the gravitational attraction of the Sun and Moon on the
irregular mass distribution of the Earth. This causes a
change in the orientation of the Earth’s equatorial plane
with respect to inertial space with a smooth, long-period
motion with a period of 26,000 years. The combined ef-
fects of planetary and lunisolar precession are called gen-
eral precession and account for the secular and long pe-
riod motion of the Celestial Ephemeris Pole (the short
period motion is called nutation). The secular and long
period motion is often used to define a mean equator
and equinox, because it does not contain the short pe-
riod motion that is modelled using nutation. Precession
is modelled using three cubic equations that are shown in
Section

Nutation

Nutation is the most complex motion in FK5 reduction.
According to Seidelmann,2 nutation is “the short period
motion of the Earth’s rotation axis with respect to a
space-fixed coordinate system.” Nutation is actually a su-
perposition of motions with many different periods, the
longest of which is 18.6 years and is associated with the
regression of the node of the Moon’s orbit. There are nu-
tation effects due to the gravitational torque of the Sun,
Moon, and planets on the Earth’s irregular mass distribu-
tion. There are also Nutation effects due to the fact that
Earth is not a rigid body. Nutation motion has an am-
plitude of about 9” and is usually represented as the sum
of two components one in longitude and one in obliquity.

Nutation is modelled by separating the free and forced
motion of the Earth. The forcing terms are due to torques
from the Sun, Moon, and planets. The free terms are
determined by observation because they are beyond our
current modelling abilities. The resulting theory is a se-
ries expansion that contains coefficients and is a function
of the location of the Sun, Moon, and planets. Nutation
is intimately connected with polar motion, and in fact, as
we’ll see in a later section, errors in nutation modelling
are captured in polar motion measurements.

Nutation

Equatorial Plane

Ecliptic Plane

Precession

Ecliptic North Pole

Υ

Figure 3.3: Inertial Motion of Earth’s Spin Axis

Sidereal Time

3.3.2 Precession Calculations

JDTDB ≈ JDTT (3.20)

TTDB =
JDTDB − 2, 451, 545.0

36525
(3.21)

ζ = 2306.2181”TTDB + 0.30188T 2
TDB + 0.017998T 3

TDB

(3.22)

Θ = 2004.3109”TTDB − 0.42665T 2
TDB − 0.041833T 3

TDB

(3.23)

z = 2306.2181”TTDB + 1.09468T 2
TDB + 0.018203T 3

TDB

(3.24)

P = R3(−z)R2(Θ)R3(−ζ) (3.25)

3.3.3 Nutation Calculations

GMAT has the ability to use either the 1980 IAU Theory
of Nutation, or the IERS 1996 Theory of Nutation. There
are some calculations that are common to both, so let’s
look at them first. The mean obliquity of the ecliptic at
the J2000 epoch, ǭ, is given by
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RIF = PRECTNUTTSTT PMT = RT
3 (−ζ)RT

2 (Θ)RT
3 (−z)

︸ ︷︷ ︸

PRECT

RT
1 (ǭ)RT

3 (−∆Ψ)RT
1 (−ǫ)

︸ ︷︷ ︸

NUTT

RT
3 (θAST )

︸ ︷︷ ︸

STT

RT
1 (−yp)R

T
2 (−xp)

︸ ︷︷ ︸

PMT

RFI = PM ST NUT PREC =

PM

︷ ︸︸ ︷

R2(−xp)R1(−yp)

ST

︷ ︸︸ ︷

R3(θAST )

NUT

︷ ︸︸ ︷

R1(−ǫ)R3(−∆Ψ)R1(ǭ)

PREC

︷ ︸︸ ︷

R3(−z)R2(Θ)R3(−ζ)

FK5
MODEq
MODEc
TODEc
TODEq
PEF
ITRF

FK5
MODEq
MODEc
TODEc
TODEq
PEF
ITRF

Figure 3.4: Intermediate Transformations and Coordinate Systems in FK5 Reduction

ǭ =84381.448− 46.8150TTDB − 0.00059T 2
TDB

+ 0.001813T 3
TDB

(3.26)

As we mentioned previously, Earth’s nutation is caused
by the combined gravitational effect of the Moon and Sun.
So, we would expect to see the time dependent location of
the Moon and Sun appear in the equations for Earth nu-
tation. The theories of nutation described below take into
account of the Moon and Sun position by modelling mean
anomalies of the Moon and Sun, l and l′ respectively, the
mean argument of latitude of the Moon, F , the difference
between the mean longitude of the Sun and Moon, D, and
the mean longitude of the ascending node of the Moon’s
orbit, Ω. The equations used to determine these values
as a function of TTDB are:

l =134.96340251◦ + (1717915923.2178TTDB+

31.8792T 2
TDB + 0.051635T 3

TDB − 0.00024470T 4
TDB)”

(3.27)

l′ =357.52910918◦ + (129596581.0481TTDB−
0.5532T 2

TDB − 0.000136T 3
TDB − 0.00001149T 4

TDB)”

(3.28)

F =93.27209062◦ + (1739527262.8478TTDB−
12.7512T 2

TDB + 0.001037T 3
TDB + 0.00000417T 4

TDB)”

(3.29)

D =297.85019547◦ + (1602961601.2090TTDB−
6.3706T 2

TDB + 0.006593T 3
TDB − 0.00003169T 4

TDB)”

(3.30)

Ω =125.04455501◦ + (−6962890.2665TTDB+

7.4722T 2
TDB + 0.007702T 3

TDB − 0.00005939T 4
TDB)”

(3.31)

1980 Nutation Theory

∆Ψ1980 =
106∑

i=1

(Ai +BiTTDB) sin ap (3.32)

∆ǫ1980 =
106∑

i=1

(Ci +DiTTDB) cos ap (3.33)

ap = a1il + a2il
′ + a3iF + a4iD + a5iΩ (3.34)

N = R1(−ǫ)R3(−∆Ψ)R1(ǭ) (3.35)

1996 Nutation Theory

The 1996 theory of nutation published by the IERS is a
higher fidelity model of Earth nutation. There are two
primary differences between the 1908 IAU theory and the
1996 IERS theory. The first difference is the 1996 the-
ory uses a 263 term series expansion for the effects of the
Earth and Moon. The 1980 theory uses a 106 term series.
The second difference is that the 1996 theory has a sec-
ond series expansion to account for the effects of nutation
caused by the more massive planets. The planetary series
expansion is a 118 term series. Let’s begin with the equa-
tions for the Earth and Moon’s effect on Earth nutation,
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according to the 1996 IERS theory:

∆Ψ1996 =

263∑

i=1

(Ai +BiTTDB) sin ap + Ei cos ap (3.36)

∆ǫ1996 =

263∑

i=1

(Ci +DiTTDB) cos ap + Fi sin ap (3.37)

ap = a1iM◦ + a2iM⊙ + a3iuM◦ + a4iD⊙ + a5iΩ◦ (3.38)

To calculate the planetary effects on nutation, we be-
gin by calculating the mean heliocentric longitude of the
planets. Only the effects of Venus(V), Mars(M), JupiterJ),
and Saturn(S) are included in the theory. We require the
Earth’s (E) mean longitude also. The mean longitudes
are calculated using:

λV = 181.979800853◦ + 58, 517.8156748TTDB

λE = 100.466448494◦ + 35, 999.3728521TTDB

λM = 355.433274605◦ + 19, 140.299314TTDB

λJ = 34.351483900◦ + 3, 034.90567464TTDB

λS = 50.0774713998◦ + 1, 222.11379404TTDB

The general precession in longitude, pa, is calculated us-
ing

pa = 1.39697137214◦TTDB + 0.0003086T 2
TDB

Finally, the planetary terms are calculated using:

∆Ψpl =

118∑

i=1

(Ai +BiTTDB) sinapl (3.39)

∆ǫpl =

118∑

i=1

(Ci +DiTTDB) cos apl (3.40)

apl = a1iλV + a2iλE + a3iλM + a4iλJ + a5iλS +

a6ipa + a7iD + a8iF + a9il + a10iΩ (3.41)

∆Ψ = ∆Ψ1996 + ∆Ψpl
︸ ︷︷ ︸

optional

(3.42)

∆ǫ = ∆ǫ1996 + ∆ǫpl
︸︷︷︸

optional

(3.43)

ǫ = ǭ+ ∆ǫ (3.44)

In GMAT, the planetary terms are optional. If the user
has selected to include the planetary terms, the

N = R1(−ǫ)R3(−∆Ψ)R1(ǭ) (3.45)

3.3.4 Sidereal Time Calculations

To calculate the sidereal time of the Earth, we need the
current time which is then used to determine the Green-
wich Mean Sidereal Time (GMST) and the equation of
the equinoxes. GMST is calculated using:

θGMST =1.00965822615e6+ 4.746600277219299e10TUT1

+ 1.396560T 2
UT1 + 9.3e− 5T 3

UT1 (arcseconds)

(3.46)

The calculation of the equation of the equinoxes is de-
pendent upon the time. If the Julian date falls after
2450449.5, then we use

EQequinox = ∆Ψ cos ǫ+ 0.00264” sin Ω + 0.000063” sin 2Ω
(3.47)

If the Julian date falls on or before 2450449.5 we use

EQequinox = ∆Ψ cos ǫ (3.48)

θAST = θGMST + EQequinox (3.49)

ST = R3(θAST ) (3.50)

3.3.5 Polar Motion Calculations

PM = R2(−xp)R1(−yp) (3.51)

3.4 Deriving RJ2k,i and ṘJ2k,i for

Various Coordinate Systems

In GMAT, there are numerous coordinate systems that
can be used to define variables, stopping conditions, space-
craft states, and other quantities. Some examples include
the Earth centered mean ecliptic of J2000 system, the
Earth-fixed system, the Mars equator system, and the
Earth-Moon rotating system.

In the following subsections, we determine how RJ2k,i

and ṘJ2k,i are calculated in GMAT for all of the coordi-
nate systems available in GMAT. Let’s begin by looking
at coordinate systems defined by the equator of a celestial
body.

3.4.1 Equator System

The Equator axis system has the following nominal con-
figuration:

• x-axis: Along the line formed by the intersection of
the bodies equator and the ecliptic plane.
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• y-axis: Completes the right-handed set.

• z-axis: Normal to the equatorial plane.

The Equator system in GMAT is a true equator of date
axis system. The equatorial coordinate system is defined
only for celestial bodies. For a particular body, the equa-
torial system is defined by the bodies equatorial plane
and its intersection with the ecliptic plane, at the current
epoch. The Earth and Moon have highly accurate mod-
els for their equatorial systems and and are treated at the
end of this section. For the remaining bodies in the solar
system, the equatorial coordinate system is calculated in
GMAT using data published by the International Astro-
nomical Union (IAU).4 The IAU publishes data that gives
the spin axis direction and prime meridian location of all
the planets and major moons as a function of time. For
the Earth, GMAT uses FK5 reduction for the Equator
system. For the Moon, GMAT can use either the IAU
data, or Euler angles provided in the JPL DE405 files.

Let’s look more closely at the data provided by the
IAU. Figure 3.5 contains an illustration of the three vari-
ables, αo, δo, and W , that are used to define a body’s spin
axis and prime meridian location w/r/t MJ2000Eq. αo

and δo are used to define a body’s spin axis direction. W
is the body’s sidereal time. The equations for αo, δo, and
W for the nine planets and the Earth’s moon are found
in Tables 3.1 and 3.2. From inspection of Fig. 3.5 we see
that

RJ2k,i = RT
3 (90◦ + αo)R

T
1 (90◦ − δo) (3.52)

αo and δo vary slowly with time, so we can assume the
derivative of RIi for the Equator system is the zero ma-
trix.

ṘJ2k,i =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.53)

If the user chooses to use the DE405 files to determine
the Moon’s orientation, then GMAT gets a set of Euler
angles and rates from the DE405 files. We then use the
following equations to determine RJ2k,i and ṘJ2k,i.

RJ2k,i = R3(θ1)
T R1(θ2)

T (3.54)

ṘJ2k,i = R3(θ1)
T ṘT

1 (θ2) + ṘT
3 (θ1)R

T
1 (θ2)(3.55)

where

Ṙ1(θ2) =





0.0 0.0 0.0

0.0 −θ̇2 sin θ2 θ̇2 cos θ2
0.0 −θ̇2 cos θ2 −θ̇2 sin θ2



 (3.56)

and

Ṙ3(θ1) =





−θ̇1 sin θ1 θ̇1 cos θ1 0.0

−θ̇1 cos θ1 −θ̇1 sin θ1 0.0
0.0 0.0 0.0



 (3.57)

Finally, for the Earth, the Equator axis system a true
of date equator system and is calculated using the algo-
rithm described in Sec. 3.4.5.

3.4.2 MJ2000 Ecliptic (MJ2000Ec)

The MJ2000 Ecliptic axis system is defined as follows:

• x-axis: Along the line formed by the intersection
of the Earth’s mean equator and the mean ecliptic
plane, at the J2000 epoch. The axis points in the
direction of the first point of Aries.

• y-axis: Completes the right-handed set.

• z-axis: Normal to the Earth’s mean equatorial plane
at the J2000 Epoch.

The matrix to rotate from MJ2000 Ecliptic (MJ2000Ec)
to MJ2000 Equatorial (MJ2000Eq) is a rotation about the
x-axis through the obliquity of the ecliptic at the J2000
epoch which is 23.439291◦:

R =





1.0 0.0 0.0
0.0 0.91748206 −0.397777156
0.0 0.39777716 0.9174820621



 (3.58)

GMAT uses more significant digits than included here.
The rotation matrix is constant by definition so its time
derivative is identically the zero matrix.

Ṙ =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.59)

3.4.3 True of Epoch Equator (TOEEq)

The True of Epoch Equator axis system is defined as fol-
lows:

• x-axis: Along the true equinox at the chosen epoch.
The axis points in the direction of the first point of
Aries.

• y-axis: Completes the right-handed set.

• z-axis: Normal to the Earth’s true equatorial plane
at the chosen Epoch.

The TOEEq axis system is an intermediate system in
FK5 reduction. RIi and ṘIi for the TOEEq system are
calculated using the following equations

RIi = NT (to)P
T (to) (3.60)

where to is the epoch defined in the coordinate system de-
scription provided by the user in the epoch field. Hence,
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Figure 3.5: IAU Definition of Pole and Meridian Locations for Planets and Moons

to is a constant value for the TOEEq system. For a given
to, the matrices associated with the TOEEq system only
need to be evaluated once and can be reused later when
necessary. P(to) and N(to) are part of the FK5 reduc-
tion algorithm and are explained in detail in Sec. 3.3.3
and 3.3.2 . Because to is fixed for a TOEEq system, the
derivative of RIi is identically equal to the zero matrix.

Ṙ =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.61)

3.4.4 Mean of Epoch Equator (MOEEq)

The Mean of Epoch Equator axis system is defined as
follows:

• x-axis: Along the mean equinox at the chosen epoch.
The axis points in the direction of the first point of
Aries.

• y-axis: Completes the right-handed set.

• z-axis: Normal to the Earth’s mean equatorial plane
at the chosen Epoch.

The MOEEq is an intermediate system in FK5 reduction
and RIi and ṘIi for the MOEEq system can be calculated
using the following equations

RIi = PT (to) (3.62)

where to is the epoch defined in the coordinate system
description provided by the user in the epoch field. Hence
to is a constant value for the MOEEq system. For a given
to, the matrices associated with the MOEEq system only
need to be evaluated once and can be reused later when
necessary. P(to) is described in Sec. 3.3.2. Because to is

fixed for a MOEEq system, the derivative of RIi is the
zero matrix.

Ṙ =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.63)

3.4.5 True of Date Equator (TODEq)

RIi and ṘIi for the TODEq system can be calculated
using the following equations Vallado1 Fig. 3-29).

RIi = NT (to)P
T (to) (3.64)

where to is the epoch. Unlike the TOEEq sytem, for the
TODEq system to is a variable and usually comes from
the epoch of the object whose state we wish to convert.
P(to) and N(to) are part of the FK5 reduction algorithm
and can be found in Vallado pgs. 214 - 219. Because to
is not fixed for a TODEq system the derivative of RIi

is non-zero. However, we will assume its derivative is
negligibly small so that

Ṙ =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.65)

3.4.6 Mean of Date Equator (MODEq)

RIi and ṘIi for the MODEq system can be calculated
using the following equations

RIi = PT (to) (3.66)

where to is the epoch. Unlike the MOEEq sytem, for the
MODEq system to is a variable and usually comes from
the epoch of the object whose state we wish to convert.
P(to) and N(to) are part of the FK5 reduction algorithm
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and can be found in Vallado1 pgs. 214 - 219. Because
to is not fixed for a MODEq system, the derivative of
RIi is non-zero. However, we will assume its derivative
is negligibly small so that

Ṙ =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.67)

3.4.7 Mean of Date Ecliptic (MODEc)

RIi and ṘIi for the MODEc system can be calculated
using the following equations

RIi = PT (to)R
T
1 (ǭ) (3.68)

where to is the epoch. For the MODEc system to is a
variable and usually comes from the epoch of the object
whose state we wish to convert. P(to) comes from the
FK5 reduction algorithm and can be found in Vallado1

pgs. 214 - 219. ǭ is given by Vallado,1 Eq. (3-52). For
a more complete discussion, you can also refer to Seidel-
mann,2 pgs. 114 - 115. Because to is not fixed for a
MODEc system, the derivative of RIi is non-zero. How-
ever, we will assume its derivative is negligibly small so
that

Ṙ =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.69)

3.4.8 True of Date Ecliptic (TODEc)

RIi and ṘIi for the TODEc system can be calculated
using the following equations

RIi = PT (to)R
T
1 (ǭ)RT

3 (−∆Ψ) (3.70)

where to is the epoch. Unlike the TOEEc sytem, for the
TODEc system to is a variable and usually comes from
the epoch of the object whose state we wish to convert.
P(to)is part of the FK5 reduction algorithm and can be
found in Vallado pgs. 214 - 219. ǭ is given by Vallado,1

Eq. (3-52). ∆Ψ is given by Eq.(3-62) in Vallado.1 For
a more complete discussion, you can also refer to Seidel-
mann,2 pgs. 114 - 115. Because to is not fixed for a
MODEq system, the derivative of RIi is non-zero. How-
ever, we will assume its derivative is negligibly small so
that

Ṙ =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.71)

3.4.9 Celestial Body Fixed

The body fixed coordinate system is referenced to the
body equator and the prime meridian of the body. The

body fixed system for Earth is found by using FK5 reduc-
tion to the ITRF system as described by Vallado. The
ITRF system is the earth fixed system.

Vallado denotes the four rotation sequences required
to transform from the ITRF to the FK5 system as [PM],
the polar motion, [ST], the sidereal time, [NUT], the nu-
tation, and [PREC], the precession. GMAT calculates
these four rotation matrices as described in Vallado. The
rotation matrix from ITRF to FK5 can be written as fol-
lows.

RIi = PT NTSTT PMT (3.72)

GMAT assumes that the the only intermediate rotation
that has a significant time derivative is the sidereal time,
[ST]. So, we can write

ṘIi = PT NT ˙ST
T
PMT (3.73)

where ˙ST is given by

˙ST =





−ωe sin θAST ωe cos θAST 0.0
−ωe cos θAST −ωe sin θAST 0.0

0.0 0.0 0.0



 (3.74)

and ωe is given by

ωe = 7.29211514670698e−5

(

1 − LOD

86400

)

(3.75)

Note that the 2nd edition of Vallado1 has inconsistencies
in Eqs. (3.72) and (3.73) and they are discussed in the
errata to the 2nd edition. We have modified equations
Eqs. (3.72) and (3.73) according to the errata.

For bodies other than the earth, the IAU gives the
spin axis direction as a function of time with respect to
the MJ2000Eq system and rotation of the prime merid-
ian in the MJ2000Eq system. This data for all of the
planets and many moons can be found in “Report of the
IAU/IAG Working Group on Cartographic Coordinates
and Rotational Elements of the Planets and Satellites:
2000” Seidelmann4 et.al. Figure 1 in this document ex-
plains the three variables, αo, δo, and W , that are used
to define the body spin axis and prime meridian location
w/r/t J2000. The values of αo, δo, and W for the nine
planets and the Earth’s moon are found on pgs. 8 and 9.

Using the notation found in the reference we can write

RIi = RT
3 (90◦ + αo)R

T
1 (90◦ − δo)R

T
3 (W ) (3.76)

For the derivative we assume that

d

dt

(
RT

3 (90◦ + αo)
)

=





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.77)

and

d

dt

(
RT

1 (90◦ − δo)
)

=





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.78)
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d

dt

(
RT

3 (W )
)

=





−Ẇ sin(W ) −Ẇcos(W ) 0.0

Ẇ cos(W ) −Ẇ sin(W ) 0.0
0.0 0.0 0.0





(3.79)
where Ẇ is the time derivative of W for the given body.
Note, Seidelmann4 does not provide the values for Ẇ so
we include them in Table 3.1. In summary

Ṙ = RT
3 (90◦ + αo)R

T
1 (90◦ − δo)

d

dt
RT

3 (W ) (3.80)

3.4.10 Body Inertial

The BodyInertial axis system is an inertial system based
on the equator of the celestial body chosen as the origin of
the system. The origin of a BodyInertial system must
be a celestial body, and cannot be a spacecraft, libration
point etc. The axes are defined as follows (except for
Earth):

• x-axis: Along the line formed by the intersection of
the bodies equator and the x-y plane of the FK5
system, at the J2000 epoch.

• y-axis: Completes the right-handed set.

• z-axis: Along the bodies instantaneous spin axis
direction at the J2000 epoch.

For Earth, the BodyInertial axis system is the FK5
system. For all other bodies, the BodyInertial axis sys-
tem is based upon the bodies equator and spin axis at the
J2000 epoch. So, BodyInertial is essentially a true-of-
epoch system referenced to the chosen central body. The
body orientation at the J2000 epoch is calculated from the
IAU Data in Seidelmann4 for the Sun, Mercury, Venus,
Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. For
the Moon, the orientation at the J2000 epoch comes from
the DE405 files. Because the BodyInertial system is an
inertial system, the derivative of the rotation matrix is
always zero:

ṘIi =





0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0



 (3.81)

The rotation matrix, RIi, is different for each celestial
body. We begin by calculating the angles α and δ used
to define the bodies orientation with respect to the FK5
system:

α = αo(TJ2000) (3.82)

δ = δo(TJ2000) (3.83)

Where TJ2000 = 2451544.9999999990686 TDB and the
equations for αo and δo are given by Seidelmann4 and
reproduced in Table 3.1. Finally, the rotation matrix is
calculated using

RJ2k,i = RT
3 (90◦ + α)RT

1 (90◦ − δ) (3.84)

The result is a rotation matrix, that is time invariant, for
each celestial body. The individual matrices are shown
below.

For the Sun

R11 = 0.9606338208497771

R21 = 0.2778176780544363

R31 = 0

R12 = −0.2494239059807128

R22 = 0.8624542595398803

R32 = 0.4404093156676427

R13 = 0.1223534934723278

R23 = −0.4230720836476433

R33 = 0.8977971010607901 (3.85)

For Mercury

R11 = 0.9815938660446788

R21 = 0.1909803187332696

R31 = 0

R12 = −0.1677571842642237

R22 = 0.8622324234816705

R32 = 0.4779254910806334

R13 = 0.09127436261733374

R23 = −0.4691287304711406

R33 = 0.8784003785150228 (3.86)

For Venus

R11 = 0.9988399975085459

R21 = 0.04815245972043356

R31 = 0

R12 = −0.04437694044018298

R22 = 0.9205233405740161

R32 = 0.3881590738545506

R13 = 0.01869081416890205

R23 = −0.3877088083617988

R33 = 0.9215923900425705 (3.87)

For the Earth

R11 = 1

R12 = 0

R13 = 0

R21 = 0

R22 = 1

R23 = 0

R31 = 0

R32 = 0

R33 = 1 (3.88)
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For the Moon

R11 = 0.998496505205088

R21 = −0.0548154092680678

R31 = 0

R12 = 0.0499357293985327

R22 = 0.909610125238044

R32 = 0.412451018902689

R13 = −0.0226086714041825

R23 = −0.411830900942613

R33 = 0.91097977859343 (3.89)

For Mars

R11 = 0.6732521982472343

R21 = 0.7394129276360177

R31 = 0

R12 = −0.5896387605430038

R22 = 0.5368794307891334

R32 = 0.6033958972853944

R13 = 0.4461587269353554

R23 = −0.4062376142607542

R33 = 0.7974417791532832 (3.90)

For Jupiter

R11 = 0.9994209020316729

R21 = −0.03402735050216735

R31 = 0

R12 = 0.0307100286015568

R22 = 0.9019874904580493

R32 = 0.430668621100356

R13 = −0.01465451212046692

R23 = −0.4304192217768545

R33 = 0.9025101322420253 (3.91)

For Saturn

R11 = −0.6506284356468798

R21 = 0.7593962330217962

R31 = 0

R12 = −0.7545700815904118

R22 = −0.6464935305479939

R32 = 0.1125615694996715

R13 = 0.08547883186107168

R23 = 0.07323575787752883

R33 = 0.9936447519469775 (3.92)

For Uranus

R11 = 0.9755767334083795

R21 = −0.2196589111150187

R31 = 0

R12 = −0.05749969269512644

R22 = −0.2553748540714755

R32 = 0.9651308042166816

R13 = −0.2119995815377986

R23 = −0.9415591572895125

R33 = −0.2617680858165513 (3.93)

For Neptune

R11 = 0.8717809455009272

R21 = 0.4898958900230839

R31 = 0

R12 = −0.3337976487639454

R22 = 0.5940005535292547

R32 = 0.7319443094160927

R13 = 0.3585765089087282

R23 = −0.6380951021167846

R33 = 0.6813644604126335 (3.94)

For Pluto

R11 = 0.7311155947298647

R21 = 0.6822536091093958

R31 = 0

R12 = −0.1077863335431382

R22 = 0.1155058299435205

R32 = 0.9874413955017208

R13 = 0.6736854558650673

R23 = −0.7219338031331282

R33 = 0.1579857286263988 (3.95)

3.4.11 Object Referenced

An object referenced system is a coordinate system whose
axes are defined by the motion of one object with respect
to another object. GMAT allows the user to define many
different types of Object Referenced system. In Fig. 3.6
we see a diagram that defines the directions a user can
choose from in creating an Object Referenced coordinate
system. There are six directions. One is the relative po-
sition, denoted here by r, of the secondary object with
respect to the primary object, expressed in an inertial
frame. The second is the the relative velocity, denoted
here by v, of the secondary object with respect to the
primary, expressed in an inertial frame. The third direc-
tion is the vector normal to the direction of motion which
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Figure 3.6: Diagram of an Object Referenced Coordinate System

is denoted by n and is calculated from n = r × v. The
remaining three directions are the negative of of the first
three.

In GMAT, a user can use the directions described
above to define an Object Referenced coordinate system.
In doing so, the user can choose two of the available di-
rections, and define which of the three axes, x, y, and z,
they desire the direction to be aligned with. Given this
information, GMAT automatically constructs an orthog-
onal coordinate system. For example, if user chooses the
x-axis to be in the direction of r and the z-axis to be in
the direction of n, the GMAT completes the right-handed
set by setting the y-axis in the direction of n × r. Obvi-
ously there are some choices that not yield an orthogonal
system, or that yield a left handed system. GMAT does
not allow the user to select these pairs of axes and throws
an error message.

In general, given the unit vectors that define the axes
system of the Object Referenced system, but expressed
in the inertial frame, GMAT uses the following equations
to determine RIi and ṘIi.

RIi = [ x̂ ŷ ẑ ] (3.96)

ṘIi =
[

˙̂x ˙̂y ˙̂z
]

(3.97)

Recall that the user chooses two axes to an Object
Referenced system among the following choices: r̂, v̂, n̂,
−r̂, −v̂, and −n̂. In general, one of the axes chosen by
the user must be either n̂, or −n̂.

If the user defines the x-axis and y-axis then GMAT
determines the z axis using

ẑ = x̂ × ŷ (3.98)

and
˙̂z = ˙̂x × ŷ + x̂ × ˙̂y (3.99)

If the user defines the y-axis and z-axis, then GMAT de-
termines the z axis using

x̂ = ŷ × ẑ (3.100)

and
˙̂x = ˙̂y × ẑ + ŷ × ˙̂z (3.101)

And finally, if the user defines the x-axis and z-axis then
GMAT determines the z axis using

ŷ = ẑ × x̂ (3.102)

and
˙̂y = ˙̂z × x̂ + ẑ × ˙̂x (3.103)

Depending on the users choice of axes for an Object
Referenced coordinate system, GMAT will need to calcu-
late r̂, v̂, n̂, ˙̂r, ˙̂v, and ˙̂n. These are given by:

r̂ =
r

‖r‖ =
r

r
(3.104)

v̂ =
v

‖v‖ =
v

v
(3.105)

n̂ =
r × v

‖r× v‖ (3.106)

˙̂r =
v

r
− r̂

r
(r̂ · v) (3.107)

˙̂v =
a

v
− v̂

v
(v̂ · a) (3.108)

˙̂n =
r × a

n
− n̂

n
(r × a · n̂) (3.109)
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3.4.12 Geocentric Solar Ecliptic (GSE)

The Geocentric Solar Ecliptic system is a time varying
axis system often used to describe and analyze the Earth’s
magnetic field. The coordinate system is defined such
that

x̂ =
rsun

‖rsun‖
(3.110)

where rsun is the vector from the Earth to the Sun in the
MJ2000Eq axis system. The z-axis is defined to be the
ecliptic pole. To ensure we have an orthogonal system,
we calculate ẑ using

ẑ =
rsun × vsun

‖rsun × vsun‖
(3.111)

Finally, the y-axis completes the right-handed set

ŷ = ẑ × x̂ (3.112)

We can construct the rotation matrix that goes from the
GSE axis system to the MJ2000Eq axis system as

RIi = [ x̂ ŷ ẑ ] (3.113)

We also need to compute the derivative of the rotation
matrix. We start by computing

dx̂

dt
=

vsun

rsun
− x̂

(

x̂ · vsun

rsun

)

(3.114)

where vsun is the velocity of the Sun with respect to the
Earth in the MJ2000Eq system. We can approximate the
derivative of the z axis using

dẑ

dt
≈ 0 (3.115)

dŷ

dt
= ẑ × dx̂

dt
(3.116)

ṘIi =

[
dx̂

dt

dŷ

dt

dẑ

dt

]

(3.117)

3.4.13 Geocentric Solar Magnetic (GSM)

x̂ =
rsun

‖rsun‖
(3.118)

Let’s define the spherical coordinates of the Earth’s
dipole in the Earth fixed frame to be λd and φd. The
location of the dipole actually changes with time. Also,
the dipole does not actually pass through the center of
the Earth. However, GMAT currently assumes that the
dipole direction is constant, and passes directly through
the center of the Earth. If this approximation is not suffi-
cient for future studies, the model will have to be updated.

λd = 70.1◦ W (3.119)

φd = 78.6◦ N (3.120)

The dipole vector in the Earth Fixed system is simply

{rd}F =





cosφd cos (−λd)
cosφd sin (−λd)

sinφd



 (3.121)

If RIF is the rotation matrix from the Earth Fixed
frame to MJ2000Eq at the current epoch, then we can
write the vector that describes the dipole direction in the
inertial frame as

{rd}I = RIF {rd}F (3.122)

Then, the y-axis is defined as

ŷ =
{rd}I × x̂

‖{rd}I × x̂‖ (3.123)

the z-axis is defined as

ẑ = x̂× ŷ (3.124)

and

RIi = [ x̂ ŷ ẑ ] (3.125)

To calculate the derivative of the rotation matrix, we
know that

dx̂

dt
=

vsun

rsun
− x̂

(

x̂ · vsun

rsun

)

(3.126)

Let’s define

y = (RIF {rd}F ) × x̂ (3.127)

and

y = ‖(RIF {rd}F ) × x̂‖ (3.128)

then

dy

dt
= ẏ =

(

ṘIF {rd}F

)

× x̂ + (RIF {rd}F )× x̂

dt
(3.129)

Now we can write

dŷ

dt
= ˙̂y =

ẏ

y
− ŷ

(

ŷ · ẏ

y

)

(3.130)

Finally,
˙̂z = ˙̂x × ŷ + x̂ × ˙̂y (3.131)

and

ṘIi =

[
dx̂

dt

dŷ

dt

dẑ

dt

]

(3.132)
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3.5 Appendix 1: Derivatives of Ob-
jectReferenced Unit Vectors

The derivations of the above quantities are shown below.
We start by deriving two derivatives with respect to n,
where n is given by:

n = r × v (3.133)

We need to determine two derivatives of n. First

dn

dt
=

d

dt
(r × v) =

dr

dt
× v

︸ ︷︷ ︸

0

+r× dv

∂t
(3.134)

so we know that
dn

dt
= r × a (3.135)

The next useful derivative is

dn

dt
=
d‖n‖
dt

=
d

dt

(
nT n

)1/2
=

nT

n

dn

dt
(3.136)

So we can write

dn

dt
=

n

n
· (r × a) (3.137)

The following two derivatives are also useful

dr

dt
=
d‖r‖
dt

=
d

dt
(rT r)1/2 =

v · r
r

(3.138)

dr

dt
=

v · r
r

(3.139)

dv

dt
=
d‖v‖
dt

=
d

dt
(vT v)1/2 =

v · a
v

(3.140)

so we can write
dv

dt
=

v · a
v

(3.141)

v̂ =
v

‖v‖ (3.142)

r̂ =
r

‖r‖ (3.143)

n̂ =
r × v

‖r × v‖ (3.144)

The time derivatives are derived as follows.

˙̂r =
∂r̂

∂t
=

∂

∂t

(
rr−1

)
=

v

r
− r

r2

(r · v
r

)

(3.145)

which can be rewritten as

dr̂

dt
=

v

r
− r̂

r
(r̂ · v) (3.146)

˙̂v =
∂v̂

∂t
=

∂

∂t

(
vv−1

)
=

a

v
− v

v2

(v · a
v

)

(3.147)

which can be rewritten as

˙̂v =
a

v
− v̂

v
(v̂ · a) (3.148)

Finally,

˙̂n =
d

dt

(
nn−1

)
=

r× a

n
− n

n3
(r × a · n) (3.149)

˙̂n =
r × a

n
− n̂

n
(r × a · n̂) (3.150)
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Table 3.1: Recommended Values for Pole and Prime Meridian Locations of the Sun and Planets4

Name Values
Sun αo = 286.13◦ (deg)

δo = 63.87◦ (deg)
W = 84.10◦ + 14.1844000◦d (deg)

Ẇ = 14.1844000◦ (deg/s)

Mercury αo = 281.01− 0.033T
δo = 61.45 − 0.005T
W = 329.548 + 6.1385025d

Ẇ = 6.1385025

Venus αo = 272.76
δo = 67.16
W = 160.20 − 1.4813688d

Ẇ = −1.4813688

Earth αo = 0.00 − 0.641T
δo = 90.00 − 0.557T
W = 190.147 + 360.9856235d

Ẇ = 360.9856235
Earth Data is included for completeness only, GMAT uses FK5 reduction
for the Earth

Mars αo = 317.68143− 0.1061T
δo = 52.88650− 0.0609T
W = 176.630 + 350.89198226d

Ẇ = 350.89198226

Jupiter αo = 268.05− 0.009T
δo = 64.49 + 0.003T
W = 284.95 + 870.5366420d

Ẇ = 870.5366420

Saturn αo = 40.589− 0.036T
δo = 83.537− 0.004T
W = 38.90 + 810.7939024d

Ẇ = 810.7939024

Uranus αo = 257.311
δo = −15.175
W = 203.81 − 501.1600928d

Ẇ = −501.1600928

Neptune αo = 299.36 + 0.70 sinN
δo = 43.46 − 0.51 cosN
W = 253.18 + 536.3128492d− 0.48 sinN

Ẇ = 536.3128492− 0.48Ṅ cosN
N = 357.85 + 52.316T

Ṅ = 6.0551× 10−4 (deg/day)

Pluto αo = 313.02
δo = 9.09
W = 236.77 − 56.3623195d

Ẇ = −56.3623195
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Table 3.2: Recommended Values for Pole and Prime Meridian Locations of Luna4

Name Values
Luna

αo = 269.9949 +0.0031T −3.8787 sinE1 −0.1204 sinE2
+0.0700 sinE3 −0.0172 sinE4 +0.0072 sinE6
−0.0052 sinE10 −0.0043 sinE13

δo = 66.5392 +0.0130T +1.5419 cosE1 +0.0239 cosE2
−0.0278 cosE3 +0.0068 cosE4 −0.00292 cosE6
+0.0009 cosE7 +.0008 cosE10 −0.0009 cosE13

W = 38.3213 +13.17635815d −1.4 × 10−12d2 +3.5610 sinE1
+0.1208 sinE2 −0.0642 sinE3 +0.0158 sinE4
+0.0252 sinE5 −0.0066 sinE6 −0.0047 sinE7
−0.0046 sinE8 +0.0028 sinE9 +0.0052 sinE10
+0.0040 sinE11 +0.0019 sinE12 −0.0044 sinE13

Ẇ = +13.17635815 −2.8 × 10−12d −.18870 cosE1
−.01280 cosE2 −.835 cosE3 +.211 cosE4
+.0248 cosE5 −.17 cosE6 −.061 cosE7
−.0015 cosE8 +.0049 cosE9 −.00083 cosE10
+.00001 cosE11 +.00031 cosE12 −.057 cosE13

where
E1 = 125.045− 0.0529921d E2 = 250.089− 0.1059842d
E3 = 260.008 + 13.0120009d E4 = 176.625 + 13.3407154d
E5 = 357.529 + 0.9856003d E6 = 311.589 + 26.4057084d
E7 = 134.963 + 13.0649930d E8 = 276.617 + 0.3287146d
E9 = 34.226 + 1.7484877d E10 = 15.134− 0.1589763d
E11 = 119.743 + 0.0036096d E12 = 239.961 + 0.1643573d
E13 = 25.053 + 12.9590088d



Draft: Work in Progress
32 CHAPTER 3. COORDINATE SYSTEMS

Fi, Ff , ri, vi

F1.Axes = FK5

True

False

Calculate

RIi

ṘIi

First Rotation

{ri}1 = RIiri

{vi}1 = ṘIiri + RIivi

{ri}1 = ri

{vi}1 = vi

Fi.Origin = Ff .Origin

True

False

Translation

Calculate
rif

vif

{rf}2 = {ri}1 + rif

{vf}2 = {vi}1 + vif

{rf}2 = {ri}1

{vf}2 = {vi}1

Ff .Axes = FK5

rf = {rf}2

vf = {vf}2

rf , vf

True

False

Second Rotation

Calculate

RfI

ṘfI

rf = RfI{rf}2

vf = ṘfI{rf}2 + RfI{vf}2

* See Sec. 3.2 for Treatment of Pseudo-Rotating Coordinate Systems

Figure 3.7: Coordinate System Transformation Algorithm
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Chapter 4

Calculation Objects

GMAT has the ability to calculate numerous quanti-
ties that are dependent upon the states of objects, co-
ordinate systems, and the mission sequence. These cal-
culation objects can range from the spacecraft state, to
the local atmospheric density, to the positions of celestial
bodies with respect to spacecraft, or other celestial bod-
ies. In chapter, we present how GMAT performs these
calculations by showing the mathematical algorithms.

The chapter begins by discussing different orbit state
representations. Each of the orbit state representations
available in GMAT are defined. Next we present the algo-
rithms used to convert between different state represen-
tations. These include the Keplerian elements, modified
Keplerian elements, Cartesian state, spherical state, and
the equinoctial elements. In the second section we present
how GMAT calculates all calculation parameters. Exam-
ples include the orbit period, percent shadow, and energy.
The algorithms to calculate all parameters are included
and described in detail. We conclude this chapter with a
presentation of the algorithms used to calculate libration
point and barycenter locations.

4.1 Spacecraft State Representa-

tions

There are several state representations that can be used
in GMAT to define the state of a spacecraft object. These
include the Keplerian elements, Cartesian state, equinoc-
tial elements, spherical elements, and the modified Kep-
lerian elements. In the following subsections, we discuss
the definitions of these states types, and show how GMAT
converts between the different state representations.

4.1.1 Definitions

The Keplerian elements are one of the most commonly
used state representations. They provide a way to de-
fine the spacecraft state in way that provides an intuitive
understanding of the motion of spacecraft in orbit. The

Keplerian elements are denoted a, e, i, ω, Ω, and ν. They
are defined in detail in Table 4.2 and illustrated in Fig.
4.1. Sections 4.1.2 and 4.1.3 show the algorithms that
GMAT uses to convert between the Keplerian elements
and the cartesian state.

The cartesian state is another common state repre-
sentation and is often used in the numerical integration
of the equations of motion. The cartesian state with re-
spect to a given coordinate system is described in detail
in Table 4.1.

The equinoctial elements are a set of non-singular el-
ements that can be used to describe the state of a space-
craft. Because they are nonsingular, they are useful for
expressing the equations of motion in Variation of Pa-
rameters (VOP) form. The elements can be unintuitive
to use however. The equinoctial elements are described
in detail in Table 4.4.

The modified Keplerian elements are similar to the
Keplerian elements except a and e are replaced with the
radius of periapsis rp, and the radius of apoapsis ra. rp
and ra are often more convenient and intuitive for describ-
ing the dimensions of a Keplerian orbit than a and e. The
modified Keplerian elements are defined in detail in Table
4.6. Note that both the Keplerian and modified Keple-
rian elements are undefined for parabolic orbits because
the semimajor axis is infinite. Currently, GMAT does not
support parabolic orbits for this reason. Let’s begin by
looking at how GMAT converts from the Cartesian state
to the Keplerian elements.

4.1.2 Cartesian State to Keplerian Ele-
ments

The conversion from the Cartesian state to the Keplerian
elements has four special cases: elliptic inclined, circular
inclined, elliptic equatorial, and circular equatorial. Cer-
tain orbital elements are undefined for some of the cases.
For example, the right ascension of the ascending node,
Ω, is undefined for equatorial orbits. However, computer
systems don’t handle undefined values gracefully. In this

33
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Figure 4.1: The Keplerian Elements

section, we’ll see how the orbital elements are defined for
each of the special cases, and how GMAT calculates the
orbital elements for each case.

Given: r, v, and µ

Find: a, e, i, ω, Ω, and ν

We begin by calculating the specific angular momen-
tum and its magnitude.

h = r × v (4.1)

h = ‖h‖ (4.2)

A vector pointing in the direction of the line of nodes is

n = [ 0 0 1 ]T × h (4.3)

n = ‖n‖ (4.4)

The orbit eccentricity and energy are calculated using

r = ‖r‖ (4.5)

v = ‖v‖ (4.6)

e =
(v2 − µ

r
)r − (r · v)v

µ
(4.7)

e = ‖e‖ (4.8)

ξ =
v2

2
− µ

r
(4.9)

Recall that for parabolic orbits, the semimajor axis is
infinite and the energy is zero. GMAT checks to see if
the orbit is near parabolic and returns an error message
in this case. The following error check avoids the possi-
bility of a divide by zero:

if |1 − e| > 10−30, then

a = − µ

2ξ
(4.10)

otherwise, report error and return. The error reported is:
“Warning: GMAT does not support parabolic orbits in
conversion from cartesian to Keplerian state”.

If the orbit is not parabolic according to the above
definition, then we continue and calculate the inclination.

i = cos−1

(
hz

h

)

(4.11)

There are four special cases for Ω, ω, and ν and each
case is treated differently.

Special Case 1: Non-circular, Inclined Orbit

if (e ≥ 10−11) and (i ≥ 10−11), then

Ω = cos−1
(nx

n

)

(4.12)

Fix quadrant for Ω: if ny < 0, then Ω = 2π − Ω

ω = cos−1
(n · e
ne

)

(4.13)
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Table 4.1: The Cartesian State
Symbol Description
x x-component of position
y y-component of position
z z-component of position
ẋ x-component of velocity
ẏ y-component of velocity
ż z-component of velocity

Table 4.2: The Keplerian Elements (also see Fig. 4.1)

Symbol Name Description
a semimajor axis The semimajor contains information on the type and size

of an orbit. If a > 0 the orbit is elliptic. If a < 0 the orbit
is hyperbolic. a = ∞ for parabolic orbits.

e eccentricity The eccentricity contains information on the shape of an
orbit. If e = 0, then the orbit is circular. If 0 < e < 1 the
orbit is elliptical. If e = 1 the orbit is parabolic. If e > 1
then the orbit is hyperbolic.

i inclination The inclination is the angle between the ẑI axis and the
orbit normal direction h. If i ≤ 90◦ then the orbit is
prograde. If i > 90◦ then the orbit is retrograde.

ω argument of periapsis The argument of periapsis is the angle between a vector
pointing at periapsis and a vector pointing in the direction
of the line of nodes. The argument of periapsis is undefined
for circular orbits.

Ω right ascension of the as-
cending node

Ω is defined as the angle between x̂I and N measured coun-
terclockwise. N is defined as the vector pointing from
the center of the central body to the spacecraft, when
the spacecraft crosses the bodies equatorial plane from the
southern to the northern hemisphere. Ω is undefined for
equatorial orbits.

ν true anomaly The true anomaly is defined as the angle between a vector
pointing at periapsis and a vector pointing at the space-
craft. The true anomaly is undefined for circular orbits.

Table 4.3: Keplerian Elements for Special Cases

Orbit Type Numerical Threshold Description

Elliptic Inclined e ≥ 10−11, i ≥ 10−11 Ω is the angle between the x-axis and the line of
nodes. ω is the angle between the line of nodes and
the eccentricity vector, ν is the angle between the ec-
centricity vector and the spacecraft position vector.

Elliptic Equatorial e ≥ 10−11, i < 10−11 Ω = 0, ω is the angle between the x-axis and the
eccentricity vector, ν is the angle between the eccen-
tricity vector and the spacecraft position vector.

Circular Inclined e < 10−11, i ≥ 10−11 Ω is the angle between the x-axis and the line of
nodes, ω = 0, ν is the angle between the line of nodes
and the spacecraft position vector.

Circular Equatorial e < 10−11, i < 10−11 Ω = 0, ω = 0, ν is the angle between the x-axis and
the spacecraft position vector.



Draft: Work in Progress
36 CHAPTER 4. CALCULATION OBJECTS
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Figure 4.2: The Spherical Elements

Fix quadrant for ω: if ez < 0, then ω = 2π − ω

ν = cos−1
(e · r
er

)

(4.14)

Fix quadrant for ν: if r · v < 0, then ν = 2π − ν

Special Case 2: Non-circular, Equatorial Orbit

if (e ≥ 10−11) and (i < 10−11), then

Ω = 0 (4.15)

ω = cos−1 ex

e
(4.16)

Fix quadrant for ω: if ey < 0, then ω = 2π − ω

ν = cos−1
(e · r
er

)

(4.17)

Fix quadrant for ν: if r · v < 0, then ν = 2π − ν

Special Case 3: Circular, Inclined Orbit

if (e < 10−11) and (i ≥ 10−11), then

Ω = cos−1
(nx

n

)

(4.18)

Fix quadrant for Ω: if ny < 0, then Ω = 2π − Ω

ω = 0 (4.19)

ν = cos−1
(n · r
nr

)

(4.20)

Fix quadrant for ν: if rz < 0, then ν = 2π − ν

Special Case 4: Circular, Equatorial Orbit

if (e < 10−11) and (i < 10−11), then

Ω = 0 (4.21)

ω = 0 (4.22)

ν = cos−1
(rx
r

)

(4.23)

Fix quadrant for ν: if ry < 0, then ν = 2π − ν

In the next section, we look at how to perform the
inverse transformation and convert from Keplerian ele-
ments to the Cartesian state vector.

4.1.3 Keplerian Elements to Cartesian
State

The transformation from the Keplerian elements to the
cartesian state is one of the most common state transfor-
mations in astrodynamics. We previously defined both
state types and refer you to Tables 4.1 and 4.2 for their
definitions. Below we show the algorithm that GMAT
uses to convert from the Keplerian elements to the Carte-
sian state.

Give: a, e, i, Ω, ω, ν, and µ

Find: r and v

We begin by checking that the magnitude of the po-
sition vector is not infinite. This avoids the possibility of
a division by zero.

if (1 + e cos ν < 1e-30), then display error and return:
“Warning: Radius is near infinite in keplerian to cartesian
conversion”



Draft: Work in Progress
4.1. SPACECRAFT STATE REPRESENTATIONS 37

If their is not a divide by zero issue we continue by cal-
culating the semilatus rectum, and the radius.

p = a(1 − e2); (4.24)

r =
p

1 + e cos ν
(4.25)

The position components of the cartesian state vector are
calculated using the following three equations.

x = r (cos (ω + ν) cosΩ − cos i sin (ω + ν) sin Ω) (4.26)

y = r (cos (ω + ν) sin Ω + cos i sin (ω + ν) cosΩ) (4.27)

z = r (sin (ω + ν) sin i) (4.28)

Before calculating the velocity components we check
to ensure the orbit is not parabolic. This avoids another
possible division by zero.

if (‖p‖ < 1e − 30), then error and return: “Warning:
GMAT does not support parabolic orbits in conversion
from keplerian to cartesian elements”.

If the orbit is not parabolic, we continue and calculate
the velocity components using

ẋ =

√
µ

p
(cos ν + e) (− sinω cosΩ − cos i sinΩ cosω)−
√
µ

p
sin ν (cosω cosΩ − cos i sinΩ sinω)

(4.29)

ẏ =

√
µ

p
(cos ν + e) (− sinω sin Ω + cos i cosΩ cosω)−
√
µ

p
sin ν (cosω sin Ω + cos i cosΩ sinω)

(4.30)

ż =

√
µ

p
[(cos ν + e) sin i cosw − sin ν sin i sinω] (4.31)

Now let’s look at how to calculate the cartesian state
given the equinoctial elements.

4.1.4 Equinoctial Elements to Cartesian
State

The equinoctial elements used in GMAT are defined in
Table 4.4. The algorithm to convert from equinoctial el-
ements to the cartesian state was taken from the GTDS
Mathematical Theory.5

Given: a, h, k, p, q, λ, and µ

Find: r and v

We begin by using the mean longitude, λ, to find the
true longitude F . The equation relating the two is tran-
scendental:

λ = F + h cosF − k sinF (4.32)

We use the Newton-Raphson method to solve for F , using
λ as the initial guess. We iterate on the following equation
until |F (i+ 1) − F (i)| < 10−10.

F (i+ 1) = F (i) − f(F )

f ′(F )
(4.33)

where

f(F ) = F + h cos(F ) − k sin(F ) − λ (4.34)

f ′(F ) = 1 − h sin(F ) − k cos(F ) (4.35)

Once the true longitude is calculated, we continue
with

β =
1

1 +
√

1 − h2 − k2
(4.36)

n =
mu

a3
(4.37)

r = a(1 − k cosF − h sin f) (4.38)

The cartesian components expressed in the equinoctial
coordinate system can be calculated using.

X1 = a
[
(1 − h2β) cosF + hkβ sinF − k

]
(4.39)

Y1 = a
[
(1 − k2β) sinF + hkβ cosF − h

]
(4.40)

Ẋ1 =
na2

r

[
hkβ cosF − (1 − h2β) sinF

]
(4.41)

Ẏ1 =
na2

r

[
(1 − k2β) cosF − hkβ sinF

]
(4.42)

The transformation from the equinoctial system to the
inertial Cartesian system is given by

r = X1f̂ + Y1ĝ (4.43)

v = Ẋ1f̂ + Ẏ1ĝ (4.44)

where [

f̂ ĝ ŵ
]

=
1

1 + p2 + q2
Q (4.45)

and

Q =





1 − p2 + q2 2pqj 2p
2pq

(
1 + p2 − q2

)
j −2q

−2pj 2q
(
1 − p2 − q2

)
j





(4.46)
and j = 1 for direct orbits ( 0 ≤ i ≤ 90◦ )
j = -1 for retrograde orbits ( 90 < i ≤ 180◦ )

Now let’s look at how to calculate the cartesian state
given the equinoctial elements.
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Table 4.4: The Equinoctial Elements

Symbol Description
a The semimajor contains information on the type and size of an orbit. If a > 0 the

orbit is elliptic. If a < 0 the orbit is hyperbolic.
h The projection of the eccentricity vector onto the ŷep axis.
k The projection of the eccentricity vector onto the x̂ep axis.
p The projection of N onto the ŷep axis.
q The projection of N onto the x̂ep axis.
λ The mean longitude.

4.1.5 Cartesian State to Equinoctial
Elements

The equinoctial elements used in GMAT are defined in
Table 4.4. The algorithm to convert from the carte-
sian state to the equinoctial elements was taken from the
GTDS Mathematical Theory.5

Given: r, v, and µ

Fine: a, h, k, p, q, λ, and µ

We begin by calculating the semimajor axis and the
eccentricity vector.

r = ‖r‖ (4.47)

v = ‖v‖ (4.48)

a =
1

2

r
− v2

µ

(4.49)

e = −r

r
− (r × v) × v

µ
(4.50)

The angular momentum vector is

ĥ =
r × v

‖r × v‖ (4.51)

The unit vectors that define the equinoctial coordinate
system can be calculated using

fx = 1 − h2
x

1 + hj
z

(4.52)

fy = − hxhy

1 + hj
z

(4.53)

fz = −hj
x (4.54)

where j is described in Section 4.1.4.

ĝ = ĥ× f̂ (4.55)

We now have the necessary information to calculate
the elements h, k, p, and q using the following relation-
ships.

h = e · ĝ (4.56)

k = e · f̂ (4.57)

p =
hx

1 + hj
z

(4.58)

q = − hy

1 + hj
z

(4.59)

The final element to calculate is the mean longitude,
λ. We begin by computing the true longitude, F , using

X1 = r · f̂ (4.60)

Y1 = r · ĝ (4.61)

and

cosF = k +

(
1 − k2β

)
X1 − hkβY1

a
√

1 − h2 − k2
(4.62)

sinF = h+

(
1 − h2β

)
Y1 − hkβX1

a
√

1 − h2 − k2
(4.63)

F = tan−1
2

(
sinF

cosF

)

(4.64)

where β is given by Eq. 4.36. The mean longitude is
computed using the generalized Kepler equation

λ = F + h cos f − k sinF (4.65)

Now let’s look at transformations involving the spher-
ical elements.

4.1.6 Cartesian State to SphericalAZFPA
State

The spherical state, with azimuth, αf , and flight path
angle, ψ, is described in Table 4.5 and Fig. 4.2. The al-
gorithm below shows how GMAT converts from the carte-
sian state to the spherical state with azimuth and flight
path angle.

Given: r and v

Find: r, λ, δ, v, ψ, and αf
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Table 4.5: The Spherical Elements

Symbol Name Description
r r Magnitude of the position vector, ‖r‖
λ Right Ascension The between the projection of r into the x − y and the

x-axis. Measured counterclockwise.
δ Declination The angle between r and the x− y plane measured in the

plane formed by r and ẑ .
v v Magnitude of the velocity vector, ‖v‖
ψ Vertical flight path angle The angle measured from a plane normal to r to the ve-

locity vector v, measured in the plane formed by r and
v

αf Flight path azimuth The angle measured from vector perpendicular r and
pointing north, to the projection of v into a plane nor-
mal to r.

We begin by calculating the right ascension λ, and the
declination δ.

r = ‖r‖ (4.66)

λ = tan−1
2 (y, x) (4.67)

δ = sin−1(
z

r
) (4.68)

The magnitude of the velocity vector is simply

v = ‖v‖ (4.69)

We calculate the vertical flight path angle, psi, using

ψ = cos−1
(r · v
rv

)

(4.70)

To calculate the azimuth angle, αz, we begin by calcu-
lating the rotation matrix from the frame in which the
cartesian state is expressed in, Fi, to a local frame, Fℓ,
where ẑ is a unit vector that points north. The basis
vectors of Fℓ expressed in Fi can be calculated using

x̂ =





cos(δ) cos(λ)
cos(δ) sin(λ)

sin(δ)



 (4.71)

ŷ =





cos(λ+ π/2)
sin(λ+ π/2)

0



 (4.72)

ẑ =





− sin(δ) cos(λ)
− sin(δ) sin(λ)

cos(δ)



 (4.73)

We can write the tranformation matrix that goes from Fi

to Fℓ, Rℓi, as
Rℓi = [ x̂ ŷ ẑ ]T (4.74)

The velocity in the local frame, v′, can be written as

v′ = Rℓiv (4.75)

Finally, we calculate the azimuth angle using

αf = tan−1
2 (v′y , v

′
z) (4.76)

Now that we have looked at how to convert from the
Cartesian state to the spherical state, let’s look at the
inverse transformation that converts from the spherical
state (with ψ and αf ) to the cartesian state.

4.1.7 SphericalAZFPA State to Cartesian
State

In this section we present the algorithm used to convert
from the spherical state (with ψ and αf ) to the cartesian
state.

Given: r, λ, δ, v, ψ, and αf

Find: r and v

The components of the position vector are calculated
using

x = r cos δ cosλ (4.77)

y = r cos δ sinλ (4.78)

z = r sin δ (4.79)

We can write the velocity vector in terms of v, ψ, and
αf as,

v = v [cos(ψ)x̂ + sin(ψ) sin(αf )ŷ + sin(ψ) cos(αf )ẑ]
(4.80)

where, x̂, ŷ, and x̂ are given in Eqs. (4.71), (4.72), and
(4.73) respectively. Breaking down Eq. (4.80) into com-
ponents gives us

vx = v[cosψ cos δ cosλ− sinψ(sinαf sinλ

+ cosαf sin δ cosλ)]
(4.81)

vy = v[cosψ cos δ sinλ+ sinψ(sinαf cosλ

− cosαf sin δ sinλ)]
(4.82)

vz = v[cosψ sin δ + sinψ cosαfcosδ] (4.83)
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4.1.8 Cartesian State to SphericalRADEC
State

The conversion form the Cartesian state to the spherical
state with right ascension of velocity, λv, and declination
of velocity, δv, is very similar to the transformation shown
in Sec. 4.1.6. The algorithm to calculate λv and δv is
shown below.

Given: r and v

Find: r, λ, δ, v, λv, and δv

To calculate r, λ, δ, and v we use Eqs. (4.66), (4.67),
(4.68), and (4.69) respectively. The right ascension of
velocity, λv, and declination of velocity, δv, are calculated
using

λv = tan−1
2 (vy , vx) (4.84)

δv = sin−1(
vz

v
) (4.85)

In the next section, we show the the transformation
from the spherical state with right ascension of velocity,
λv, and declination of velocity, δv, to the cartesian state.

4.1.9 SphericalRADEC State to Cartesian
State

This transformation is similar to the conversion presented
in Sec 4.1.7. The primary difference is how the velocity
is represented.

Given: r, λ, δ, v, λv, and δv

Find: r and v

The position components are calculated using Eqs.
(4.77), (4.78), and (4.79). The velocity components are
calculated using

vx = v cosλ cos δ (4.86)

vy = vx tanλ (4.87)

vz = v sin δ (4.88)

In the last few subsections, we have looked at trans-
formations involving the spherical elements. Now let’s
look at transformations involving the modified Keplerian
elements.

4.1.10 Keplerian or Cartesian, to Modi-
fied Keplerian Elements

The modified Keplerian elements, described in Table 4.6,
are similar to the classical Keplerian elements. The modi-
fied Keplerian elements use the radius of apoapsis, ra, and

the radius of periapsis, rp, to describe the size and shape
of an orbit. The remaining elements, i, Ω, ω, and ν, are
the same for both the Keplerian and modified Keplerian
elements. The modified Keplerian elements, like the Ke-
plerian elements, are undefined for parabolic orbits. Let’s
look at how GMAT calculates the modified

Given: a, e, i, ω, Ω, and ν, or r, v, and µ

Find: rp and ra

If we are given the Cartesian state, we first calculate
the orbital elements using the algorithm in Sec. 4.1.3.
Knowing the Keplerian elements, we calculate ra and rp
using

ra = a(1 + e) (4.89)

rp = a(1 − e) (4.90)

Now let’s look at the inverse transformation.

4.1.11 Modified Keplerian Elements to Ke-
plerian Elements

The conversion from modified Keplerian elements to the
Keplerian elements is discussed below. To perform the
conversion, we use relationships that allow us to right the
semimajor axis, a, and the eccentricity, e, in terms of ra
and rp.

Given: rp, ra, i, ω, Ω, and ν

Find: a and e

We begin by calculating the eccentricity using

e =
1 − rp

ra

1 +
rp
ra

(4.91)

The semimajor axis is calculated using

a =
rp

1 − e
(4.92)

This concludes our discussion of state transformations.
In the last few subsections we presented the algorithms
used to convert between different orbit state representa-
tions used in GMAT. These include the Cartesian state,
the Keplerian elements, the modified Keplerian elements,
and two spherical state parameterizations. In the next
section, we present the algorithms used to calculate prop-
erties such as orbit period, beta angle, and mean motion
to name a few.
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Table 4.6: The Modified Keplerian Elements

Symbol Name Description
rp radius of periapsis The radius of periapsis is the radius at the spacecrafts clos-

est approach to the central body. The radius of periapsis
must be greater than zero, parabolic orbits are not cur-
rently supported.

ra radius of apoapsis For an elliptic orbit ra is the radius at the spacecrafts far-
thest distance from the central body and ra > rp. For
hyperbolic orbits, ra < rp and ra < 0

i inclination The inclination is the angle between the ẑI axis and the
orbit normal direction h. If i ≤ 90◦ then the orbit is
prograde. If i > 90◦ then the orbit is retrograde.

ω argument of periapsis The argument of periapsis is the angle between a vector
pointing at periapsis, xp, and a vector pointing at the
spacecraft. The argument of periapsis is undefined for cir-
cular orbits.

Ω right ascension of the as-
cending node

Ω is defined as the angle between x̂I and N measured coun-
terclockwise. N is defined as the vector pointing from
the center of the central body to the spacecraft, when
the spacecraft crosses the bodies equatorial plane from the
southern to the northern hemisphere. Ω is undefined for
equatorial orbits.

ν true anomaly The true anomaly is defined as the angle between a vec-
tor pointing at periapsis, xp, and a vector pointing at the
spacecraft. The true anomaly is undefined for circular or-
bits.

4.2 Simple Parameters

Simple parameters, which we will abbreviate as simply
“parameters”, are properties of spacecraft or other ob-
jects that are only dependent upon one of the following:
CoordinateSystem, CentralBody, or None. An example
of a simple parameter is the magnitude of a spacecrafts
velocity vector. The spacecrafts velocity vector is depen-
dent upon the coordinate system in which it is expressed.
Once we have specified a coordinate system, it is trivial to
calculate the velocity vector, and therefore its magnitude,
in that coordinate system.

In GMAT, the syntax to specify a simple parameter
is

ObjectName.Dependency.ParameterName

So, to calculate the magnitude of the velocity, of a space-
craft named Sat, in the Earth Fixed frame, we would use

Sat.EarthFixed.VMAG

GMAT has the ability to calculate many parameters in
addition to VMAG. In the following subsections, we present
the algorithms used to calculate all parameters in GMAT.
We begin each subsection with a description of the param-
eter, and then give the type of dependency.

4.2.1 A1Gregorian

Description: A1Gregorian is the epoch of an object, in
the A1 time system, given in the Gregorian date format.

Dependency: None.

The A1 date, in modified Julian date format is the
current independent variable for time in GMAT. There-
fore, it is not necessary to convert the date to another
system for this parameter. The only calculation required
for this parameter is to use the algorithm in Sec. ?? to
convert from Modified Julian date format to Gregorian
date format.

4.2.2 A1ModJulian

Description: A1ModJulian is the epoch of an object, in
the A1 time system, given in the modified Julian date
format.

Dependency: None.

The A1 date, in modified Julian date format is the
current independent variable for time in GMAT. There
are no calculations required for this parameter.
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4.2.3 Altitude

Description: Altitude is the distance between a space-
craft and a plane tangent to the surface of the body at
the sub-satellite point. GMAT assumes the body is an
ellipsoid. The equatorial radius, and properties of the el-
lipsoid depend upon the particular body chosen by the
user.

Dependency: Central Body.

Given: r in F1

Find: A

Definitions:

• F1 is the coordinate system in which GMAT origi-
nally knows r

• FF is body fixed system of the central body selected
by the user.

• f is the bodies flattening coefficient

• R is the bodies mean equatorial radius

• φgd is the geodedic latitude of the spacecraft in the
body fixed frame.

• h is the Altitude parameter

First we calculate φgd using the algorithm in Sec.
4.2.21. However, to calculate h, GMAT does not convert
to degrees, or use the modulo function.

Then, with r expressed in FF , we perform

rxy =
√

x2 + y2 (4.93)

e2 = 2f − f2 (4.94)

h =
rxy

cos(φgd)
− R
√

1 − e2 sin2 φgd

; (4.95)

4.2.4 AOP

Description: AOP is the argument of periapsis of a space-
craft. The argument of periapsis is the angle between
the eccentricity vector and a vector in the direction of
the right ascension of the ascending node. See below for
treatment of circular and equatorial orbits. This algo-
rithm is adopted from Vallado.1

Dependency: Coordinate System.

Given: r and v

Find: ω
r = ‖r‖

v = ‖v‖

e =

(

v2 − µ

r

)

r − (r · v)v

µ

e = ‖e‖
Special Case: Circular Orbit
if e < 10−11 then, ω = 0.0 and return.

Otherwise continue,

h = r × v

h = ‖h‖

i = cos−1

(
hz

h

)

Special Case: Elliptic, Equatorial Orbit
if i < 10−11 then,

ω = cos−1
(ex

e

)

(4.96)

where ex is the first component of the eccentricity vector.
Fix quadrant for ω: if ey < 0, then ω = 2π − ω

Otherwise continue

Special Case: Elliptic, Inclined Orbit

n = [ 0 0 1 ]T × h

ω = cos−1 n · e
‖n‖‖e‖

Fix quadrant for ω: if ez < 0, then ω = 2π − ω.
Finally, ω is converted to degrees.

4.2.5 Apoapsis

Description: Apoapsis is the parameter used in stopping
conditions to allow the stopping condition algorithm to lo-
cate the time when a spacecraft is at apoapsis. Apoapsis
is defined as a point, along an orbital path, when the com-
ponent of velocity, in the spacecraft position vector direc-
tion, changes from positive to negative. The Apoapsis

parameter is defined as the dot product of the position
and velocity vectors.

Dependency: Central Body.

Given: r, v in F1

Find: A

Definitions:

• F1 is the coordinate system in which GMAT origi-
nally knows r and v
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• F2 is a system with the MJ2000Eq axes, centered
at the central body selected by the user.

• A is the Apoapsis parameter

if (F1 6= F2) convert r and v to F2. Then,

A = r · v (4.97)

4.2.6 AZI

Description: AZI is the azimuth angle of a spacecraft, as
shown in Fig. 4.1 using the symbol αf .

Dependency: Coordinate System.

Given: r, v and F

Find: αf

AZI is calculated using the algorithm shown in Sec.
4.1.6. There is little benefit using a routine that calculates
only αf and not ψ.

4.2.7 BdotT and BdotR

Description: The “B” vector, B, is only defined for hy-
perbolic orbits and is the vector from the center of mass
of the central body, to the incoming hyperoblic asysmp-
tote, such that the length of B is a minimum. Another
way to say this is that B is perpendicular to the incoming
asymptote. Let’s define S as a unit vector in the direc-
tion of the incoming asymptote. Then, T is a unit vector
perpendicular to S, that lies in the xy-plane of the coor-
dinate system, FB, chosen by the user. R is a unit vector
perpendicular to both S and T. Finally, BdotT is the dot
product of B and T, and BdotR is the dot product of B
and R. The method below was adopted from work by
Kizner.6

Dependency: Coordinate System.

Given: r, v, and definition of FB

Find: BR and BT

Definitions:

• F1 is the coordinate system in which GMAT origi-
nally knows r and v

• FB is the coordinate system in which to perform B-
plane calculations. GMAT will place T in the xy-
plane of FB. FB must have a gravitational body at
its origin.

• µ is the gravitational parameter of the central body
at the origin of FB

• BR is the dot product of B and R

• BT is the dot product of B and T

if the selected coordinate system does not have a ce-
lestial body as its origin, then exit and throw an error
message.

θB

R B

T

xy-plane of FB

Central Body

z-axis of FB

B · T

B ·R

Figure 4.3: Geometry of the B-Plane as Seen From a
Viewpoint Perpendicular to the B-Plane

B

Central Body

Incoming Trajectory

Incoming
Asymptote

Figure 4.4: The B-Vector as Seen From a Viewpoint Per-
pendicular to Orbit Plane

if F1 6= FB convert r and v from F1 to FB
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r = ‖r‖
v = ‖v‖

Calculate eccentricity related information

e =

(

v2 − µ

r

)

r − (r · v)v

µ

e = ‖e‖

ê =
e

e

If e ≤ 1, then the method fails and returns.

Now let’s calculate the angular momentum and orbit
normal vectors.

h = r × v

h = ‖r× v‖

ĥ =
h

h

A unit vector normal to both the eccentricity vector
and the orbit normal vector is defined as:

n̂ = ĥ× ê

The following relations are only true for hyperbolic orbits:
The semiminor axis, b, can be calculated using

b =
h2

µ
√
e2 − 1

The incoming asymptote is defined using

S =
ê

e
+

√

1 −
(

1

e

)2

n̂

The B-vector, B, is calculated using

B = b





√

1 −
(

1

e

)2

ê− 1

e
n̂





The remaining vectors, T and R are found using

T =
[ Sy − Sx 0 ]T
√

S2
x + S2

y

R = S× T

Finally, the desired quantities are found using

BT = B · T

BR = B ·R

if F1 6= F2 , convert r and v to F2

A = r · v (4.98)

4.2.8 BetaAngle

Definition: The Beta angle, β, is defined as the angle
between the orbit normal vector, and the vector from the
celestial body to the sun.

ĥ =
r⊕ × v⊕

‖r⊕ × v⊕‖

r̂s⊕ =
rs⊕

‖s⊕‖

β = sin−1
(

ĥ · r̂s⊕

)

(4.99)

• r⊕: Position vector of spacecraft with respect to
celestial body, in the EarthMJ2000Eq system.

• v⊕: Velocity vector of spacecraft with respect to
celestial body, in the EarthMJ2000Eq system.

• rs⊕: Position vector from celestial body, to the sun.

4.2.9 BVectorAngle and BVectorMag

To avoid code reduplication, the magnitude and angle of
the B vector, ‖B‖ and θB respectively, are calculated from
the outputs of the B-Plane coordinates algorithm. The
equations for ‖B‖ and θB are

‖B‖ =
√

B2
T +B2

R (4.100)

θB = tan−1 BR

BT
(4.101)

which is implemented using atan2(BR, BT )

4.2.10 C3Energy

Given: a, and µ

Find: C3

C3 = −µ
a

(4.102)

Comment : a is calculated from the satellite cartesian
state as shown in Section 4.1.2, and µ is associated with
the specified central body.

4.2.11 DEC

Description: DEC is the declination of a spacecraft, as
shown in Fig. 4.2 using the symbol δ.

Dependency: Coordinate System.
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Given: r, v and F

Find: δ

Begin by converting r and v to F if necessary. Then,

r = ‖r‖ (4.103)

δ = sin−1(
z

r
) (4.104)

4.2.12 DECV

Description: DECV is the declination of velocity of a space-
craft.

Dependency: Coordinate System.

Given: r, v and F

Find: δv

Begin by converting r and v to F if necessary. Then,

δv = sin−1(
vz

v
) (4.105)

4.2.13 ECC

Description: ECC is the eccentricity of an orbit and must
be greater than or equal to zero. The eccentricity contains
information on the shape of an orbit. If ECC is zero then
the orbit is circular. If ECC is greater than zero, but less
than one, the orbit is elliptic. If ECC equals one, the
orbit is parabolic. Finally, if ECC is greater than one,
the orbit is hyperbolic. The algorithm used in GMAT to
calculate SMA is adopted from Vallado.1

Dependency: Central Body.

Given: r, v, and µ (Central Body)

Find: e

r = ‖r‖ (4.106)

v = ‖v‖ (4.107)

e =
(v2 − µ

r
)r − (r · v)v

µ
(4.108)

e = ‖e‖ (4.109)

4.2.14 FPA

Description: FPA is the orbit vertical Flight Path Angle
as as shown in Fig. 4.2 using the symbol ψ.

Dependency: Coordinate System.

Given: r, v, and coordinate system F .

Find: ψ

Begin by converting r and v to F if necessary. Then,

ψ = cos−1
(r · v
rv

)

(4.110)

4.2.15 EA

Given: ν, e

Find: E

If e > ( 1 - 1e−11 ) then E = 0, return.

Otherwise,

sin(E) =

√
1 − e2 sin(ν)

1 + e cos ν
(4.111)

cos(E) =
e+ cos ν

1 + e cos ν
(4.112)

E = atan2(sinE, cosE) (4.113)

4.2.16 Energy

Description: Energy is the orbit energy.

Dependency: Central Body.

Given: r, v, and central body.

Find: ξ

Begin by converting r and v to a coordinate system
with the origin equal to the central body defined by the
user, and the MJ2000Eq axis system. Then,

r = r (4.114)

v = v (4.115)

ξ =
v2

2
− µ

r
(4.116)

4.2.17 HMAG

Description: HMAG is the magnitude of the orbit angular
momentum.

Dependency: Central Body.

Given: r, v, and central body.

Find: h
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Begin by converting r and v to a coordinate system
with the origin equal to the central body defined by the
user, and the MJ2000Eq axis system. Then,

h = r × v (4.117)

h = ‖h‖ (4.118)

4.2.18 HX,HY, and HZ

Description: HX,HY, and HZ are the components of the
orbit angular momentum vector.

Dependency: Coordinate System.

Given: r, v, and coordinate system F .

Find: hx, hy, and hz

Begin by converting r and v to F if necessary. Then,

h = r× v = [ hx hy hz ]T (4.119)

4.2.19 HA

Description: HA is the orbit Hyperbolic Anomaly and is
only defined for hyperbolic orbits. For non-hyperbolic
orbits, HA returns a value of zero.

Dependency: Central Body. Given: ν, e

Find: H

If e < ( 1 + 1e−11 ) then H = 0, return.

Otherwise,

sinh(H) =
sin(ν)

√
e2 − 1

1 + e cos ν
(4.120)

cosh(H) =
e+ cos ν

1 + e cos ν
(4.121)

H = tanh−1(
sinhH

coshH
) (4.122)

4.2.20 INC

Description: INC is the inclination of an orbit in the cho-
sen coordinate system.

Dependency: Coordinate System.

Given: r, v, and coordinate system mathcalF .

Find: e

Begin by converting r and v to mathcalF if necessary.
Then,

h = r × v (4.123)

h = h (4.124)

i = cos−1(
hz

h
) (4.125)

4.2.21 Latitude

Description: Latitude is the geodetic latitude of a space-
craft. The geodedic latitude is defined as the the angle
φgc, as shown in Fig. ( ), where the sub-satellite point
is defined by the interscection of a line drawn from the
spacecraft and perpendicular to a plane tangent to the
surface of the body. GMAT assumes the body is an ellip-
soid. The equatorial radius, and properties of the ellipsoid
depend upon the particular body chosen by the user. The
algorithm in GMAT is taken from Vallado.1

h

φgdφgc

Figure 4.5: Geocentric and Geodetic Latitude

Dependency: Central Body.

Given: r in F1

Find: φgc

Definitions:

• F1 is the coordinate system in which GMAT origi-
nally knows r

• FF is body fixed system of the central body selected
by the user.

• f is the bodies flattening coefficient

• R is the bodies mean equatorial radius

• φgd is the geodedic latitude of the spacecraft in the
body fixed frame.
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if F1 6= FF convert r from F1 to FF . Then,

rxy =
√

x2 + y2 (4.126)

Calculate the geocentric latitude to use as an initial guess
to find the geodetic latitude

φgd ≈ atan2(z, rxy); (4.127)

e2 = 2f − f2 (4.128)

Set δ = 1.0 to initialize the loop, then,

While ( δ > 10−7 )

φ′ = φgd (4.129)

φgd = atan2

(

z +
Re2 sin2 φgd
√

1 − e2 sinφgd

, rxy

)

(4.130)

δ = |φgd − φ′| (4.131)

EndWhile

After convergence, φgd is converted to degrees, and
converted to fall between −90◦ and +90◦ degrees.

4.2.22 Longitude

Description: Longitude is the longitude of an object, in
the body fixed frame of the central body chosen by the
user.

Dependency: Central Body.

Given: r, central body.

Find: φ

Begin by converting r to the body fixed system of the
central body defined by the user. Then,

φ = tan−1
2 (y, x); (4.132)

The calculation is completed by converting to degrees and
setting the value to such that −180 ≤ φ < 180.

4.2.23 LST

Description: LST is the local sidereal time of an object,
with respect to the selected central body. The local side-
real time is the sum of the longitude in the bodies fixed
frame, and the mean sidereal time. This is illustrated in
Fig. 4.6, where FI is the body’s equatorial inertial sys-
tem (as described in Sec. 3.4.1), FF is the body’s fixed
system (as described in Sec. 3.4.9). λ is the longitude
of the object, in this case a spacecraft, and θMST is the
mean sidereal time of the prime meridian.

Dependency: Central Body.

Given: r, ti (epoch of spacecraft in internal time system),
and central body

Find: θLST

Definitions:

• FI equatorial inertial system (as described in Sec.
3.4.1) of selected central body.

• FF is the central body’s fixed system (as described
in Sec. 3.4.9)

• λ is the longitude of the object in FF

• θMST is the mean sidereal time of the central body’s
prime meridian.

• ti (epoch of spacecraft in internal time system)

x̂I

x̂F

ŷI

ŷF

θMST

λ

θLST

θMHA

Figure 4.6: Local Sidereal Time Geometry

We begin by calculating λ using the algorithm de-
scribed in Sec. 4.2.22. The mean sidereal time θMST

is calculated differently for Earth than for other central
bodies. If the central body is Earth, then we use the
following equations to calculate θMST .

First, convert ti, which is the spacecraft epoch in the
interal time system (A1 Modified Julian Date), to TUT1,
which is the number elapsed Julian centuries from the
J2000 epoch.

TUT1 =
tut1 − 21544.5

36525
(4.133)
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θMST =67310.54841s+

(876600h

(
3600s

1h

)

+ 8640184.812866)TUT1+

0.093104T 2
UT1 − 6.2 × 10−6T 3

UT1

(4.134)

4.2.24 MA

Given: ν, e

Find: M

If e < ( 1 - 1e−11 ) then calculate E using algorithm in
Sec. 4.2.15. Then M is calculated using

M = E − e sinE (4.135)

Note: E must be expressed in radians in the above equa-
tion, and results in M in radians.

If e > ( 1 + 1e−11 ) then calculate H using algorithm in
Sec. 4.2.19. Then M is calculated using

M = e sinhH −H (4.136)

Note: H must be expressed in radians in the above equa-
tion, and results in M in radians. GMAT outputs MA in
degrees.

If neither of the above conditions are satisfied, M = 0,
and output “Warning: Orbit is near parabolic in mean
anomaly calculation. Setting MA = 0”.

4.2.25 MHA

4.2.26 MM

Given: a, e, and µ

Find: n

The orbit is considered either circular or elliptic ( both
orbit types use the same equation to calculate n) if e <
1 − 1e−11. In this case the mean motion, n, is calculated
using

n =

√
µ

a3
(4.137)

The orbit is considered hyperbolic if e > 1 + 1e−11. In
this case the mean motion, n, is calculated using

n =

√

− µ

a3
(4.138)

If neither of the above two conditions are met, the mean
motion is calculated using

n = 2
√
µ (4.139)

Comment : a and e are calculated from the satellite carte-
sian state as shown in Section 4.1.2, and µ is associated
with the specified central body.

4.2.27 OrbitPeriod

Given: a, and µ

Find: T

If a < 0, then T = 0, return.

Otherwise,

T = 2π

√

a3

µ
(4.140)

Comment : a is calculated from the satellite cartesian
state as shown in Section 4.1.2, and µ is associated with
the specified central body.

4.2.28 PercentShadow

The PercentShadow parameter calculates the percentage
of the apparent solar disk that is in view from the per-
spective of a spacecraft. The algorithm used in GMAT
was adapted from Montenbruck7 pgs. 80-83.

rB

r⊙

r

s

s⊙

Figure 4.7: Shadow Geometry

• R⊙ = Radius of the Sun

• RB = Radius of occulting body

• R′
⊙ = Apparent radius of the Sun
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• R′
B = Apparent radius of occulting body

• r⊙ = Vector from central body to Sun

• rB = Vector from central body to occulting body

• r = Vector from central body to s/c

We begin by calculating the vector from the occulting
body to the spacecraft, s, using

s = r − rB (4.141)

and the vector from the occulting body to the sun, s⊙,
using

s⊙ = r⊙ − rB (4.142)

(Note that when the occulting body is the same as the
central body, s = r, and s⊙ = r⊙)

Next we calculate the apparent radius of the Sun and
occulting body using

R′
⊙ = sin−1 R⊙

‖r⊙ − r‖ (4.143)

R′
B = sin−1 RB

‖r− rB‖ (4.144)

We can calculate the apparent separation of the two bod-
ies, D′, using

D′ = cos−1

(−sT (r⊙ − r)

s‖r⊙ − r‖

)

(4.145)

If D′ ≥ R′
⊙ + R′

B, then the spacecraft is not in the
body’s shadow and

p = 0; (4.146)

If D′ ≤ R′
B−R′

⊙, then the spacecraft is in full shadow
and

p = 100; (4.147)

If neither of the above conditions are met, the space-
craft is in partial shadow.

If |R′
s−R′

B| < D′ < R′
s+R

′
B, then we can calculate the

percentage of shadow by calculating the area of overlap,
A, of the two apparent disks as shown in Fig. 4.8.

A = R
′2
⊙ cos−1

(
c1
R′

⊙

)

+R
′2
B cos−1

(
D′ − c1
R′

B

)

−D′c2

(4.148)
where

c1 =
D

′2 +R
′2
⊙ −R

′2
B

2D′
(4.149)

and

c2 =
√

R
′2
⊙ − c21 (4.150)

R′
B

R′
⊙

D′

Sun
Occulting Body

Figure 4.8: Occultation Geometry in Calculation of Per-
centShadow

The percent shadow can be calculated using

p = 100
A

πR
′2
⊙

(4.151)

If the condition |R′
⊙ − R′

B| < D′ < R′
⊙ + R′

B is not
satisfied, then the eclipse is annular and we use

p = 100
R

′2
B

R
′2
⊙

(4.152)

4.2.29 RA

Description: RA is the right ascension of a spacecraft, as
shown in Fig. 4.2 using the symbol λ.

Dependency: Coordinate System.

Given: r, v and F

Find: λ

Begin by converting r and v to F if necessary. Then,

λ = tan−1
2 (y, x) (4.153)

4.2.30 RAV

Description: RAV is the right ascension of velocity of a
spacecraft, as shown in Fig. 4.2 using the symbol λv.

Dependency: Coordinate System.

Given: r, v and F

Find: λv

Begin by converting r and v to F if necessary. Then,

λv = tan−1
2 (vy, vx) (4.154)



Draft: Work in Progress
50 CHAPTER 4. CALCULATION OBJECTS

4.2.31 RAAN

Description: RAAN is the right ascension of the ascending
node as shown in Fig. 4.1 using the symbol Ω.

Dependency: Coordinate System.

Given: r, v, and coordinate system F .

Find: e

Begin by converting r and v to F if necessary. Then,

h = r × v (4.155)

h = ‖h‖ (4.156)

n = [ 0 0 1 ]T × h (4.157)

n = ‖n‖ (4.158)

i = cos−1

(
hz

h

)

(4.159)

if (i ≥ 10−11), then

Ω = cos−1
(nx

n

)

(4.160)

Fix quadrant for Ω: if ny < 0, then Ω = 2π − Ω

if (i < 10−11), then
Ω = 0 (4.161)

4.2.32 RadApo

Given: a, and e

Find: ra

if 1 − e < 10−12 then ra = 0. Note, this means that for
parabolica, and hyperbolic orbits, GMAT outputs a value
of zero for RadApo. Otherwise,

ra = a(1 + e) (4.162)

Comment : a and e are calculated from the satellite carte-
sian state as shown in Section 4.1.2.

4.2.33 RadPer

Given: a, and e

Find: rp

rp = a(1 − e) (4.163)

Comment : a and e are calculated from the satellite carte-
sian state as shown in Section 4.1.2.

4.2.34 RMAG

Description: RMAG is the magnitude of the spacecraft’s
position vector.

Dependency: Central Body.

Given: r and central body.

Find: r

Begin by converting r to a coordinate system with the
origin equal to the central body defined by the user, and
the MJ2000Eq axis system. Then,

r = ‖r‖ (4.164)

4.2.35 SemilatusRectum

Description: SemilatusRectum is the orbit semilatus rec-
tum, which is the magnitude of the position vector, when
at true anomaly of 90◦.

Dependency: Central Body.

Given: r, v, and µ (central body).

Find: p

Begin by converting r and v to a coordinate system
with the origin equal to the central body defined by the
user, and the MJ2000Eq axis system. Then,

h = r × v (4.165)

h = ‖h‖ (4.166)

p =
h2

µ
(4.167)

4.2.36 SMA

Description: SMA is the semimajor axis of an orbit. The
SMA contains information on the size and type of an
orbit. If the SMA is positive, the orbit is elliptic. If
the SMA is negative the orbit is hyperbolic. The SMA
is undefined for parabolic orbits. The algorithm used in
GMAT to calculate SMA is adopted from Vallado.1

Dependency: Central Body.

Given: r, v, and µ (Central Body)

Find: a

r = ‖r‖ (4.168)

v = ‖v‖ (4.169)

ξ =
v2

2
− µ

r
(4.170)
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if |1 − e| > 10−30, then

a = − µ

2ξ
(4.171)

otherwise, report error and return. Error: “Warning: Or-
bit is near parabolic and SMA is undefined”.

4.2.37 TA

Description: TA is the orbit true anomaly as shown in
Fig. 4.1 using the symbol ν.

Dependency: Central Body.

Given: r, v, and coordinate system F .

Find: ν

Begin by converting r and v to F if necessary. Then,

h = r × v (4.172)

h = ‖h‖ (4.173)

n = [ 0 0 1 ]T × h (4.174)

n = ‖n‖ (4.175)

r = ‖r‖ (4.176)

v = ‖v‖ (4.177)

e =
(v2 − µ

r
)r − (r · v)v

µ
(4.178)

e = ‖e‖ (4.179)

i = cos−1

(
hz

h

)

(4.180)

There are three special cases, and they are treated differ-
ently.

Special Case 1: Elliptic Orbit

if (e ≥ 10−11), then

ν = cos−1
(e · r
er

)

(4.181)

Fix quadrant for ν: if r · v < 0, then ν = 2π − ν

Special Case 2: Circular, Inclined Orbit

if (e < 10−11) and (i ≥ 10−11), then

ν = cos−1
(n · r
nr

)

(4.182)

Fix quadrant for ν: if rz < 0, then ν = 2π − ν

Special Case 3: Circular, Equatorial Orbit

if (e < 10−11) and (i < 10−11), then

ν = cos−1
(rx
r

)

(4.183)

Fix quadrant for ν: if ry < 0, then ν = 2π − ν

4.2.38 TAIModJulian

Description: TAIModJulian is the epoch in the TAI time
system, expressed in the modified Julian date format. See
Sec. 2.1.1 and 2.2.1 for more details.

Dependency: None.

Given: A1 (epoch in the internal, A1 time system).

Find: TAI

To convert from A1 to TAI we use the following equa-
tion

TAI = A1 − 0.0343817sec (4.184)

4.2.39 TTModJulian

Description: TTModJulian is the epoch in the TT time
system, expressed in the modified Julian date format. See
Sec. 2.1.3 and 2.2.1 for more details.

Dependency: None.

Given: A1 (epoch in the internal, A1 time system).

Find: TT

To convert from A1 to TT we use the following equa-
tion

TT = A1 − 0.0343817sec + 32.184sec (4.185)

4.2.40 TTGregorian

Description: TTGregorian is the epoch in the TT time
system, expressed in the Gregorian date format. See Sec.
2.1.3 and 2.2.2 for more details.

Dependency: None.

Given: A1 (epoch in the internal, A1 time system).

Find: TT

To convert from A1 to TT we use Eq. (4.185). Then,
knowing the epoch in the TT time system in the modified
Julian date format, we use the algorithm in Sec. 2.2.1 to
obtain the Gregorian date.

4.2.41 Umbra and Penumbra

The Umbra and Penumbra parameters are used to de-
termine if a spacecraft is in the shadow of a celestial
body. The algorithm used in GMAT is adapted from
Montenbruck7 pgs. 80-81. For both functions, if the value
is less than 1, then the body is in shadow, if the function
is greater than 1, then the body is not in shadow.
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αp
αu

Penumbra (Annular Eclipse)

Umbra (Total Eclipse)
Penumbra

s
d

ℓ

Figure 4.9: Geometry of Umbra and Penumbra Regions

For definitions of see Sec. 4.2.28.

ℓ =
−sT s⊙
s⊙

(4.186)

d =
√

s2 − l2 (4.187)

sinαp =
R⊙ +RB

s⊙
(4.188)

sinαu =
R⊙ −RB

s⊙
(4.189)

The radii of the umbra and penumbra cones, rp and ru,
at distance ℓ, are respectively

rp = tanαp

(

ℓ+
RB

sinαp

)

(4.190)

ru = tanαu

(

ℓ− RB

sinαu

)

(4.191)

Finally, if ℓ ≥ 0

dp = d− rp (4.192)

du = d− |ru| (4.193)

If ℓ > 0 du < 0 and ru < 0, then the object is in the total
umbral eclipse region.
If ℓ > 0 du < 0 and ru ≥ 0, then the object is in the
annular umbral eclipse region.
If ℓ < 0, then the object is on the day side of the occulting
body and is not in shadow and

dp = |d− rp| (4.194)

du = |d− |ru|| (4.195)

4.2.42 UTCModJulian

Description: UTCModJulian is the epoch in the UTC time
system, expressed in the modified Julian date format. See
Sec. 2.1.2 and 2.2.1 for more details.

Dependency: None.

Given: A1 (epoch in the internal, A1 time system).

Find: UTC

To convert from A1 to UTC we use the following equa-
tion

UTC = A1 − 0.0343817sec− ∆AT (4.196)

The default is to read ∆AT from the file named tai-
utc.dat. ∆AT is the accumulated leap seconds since Jan.
1961.

4.2.43 VelApoapsis

Given: a, e, and µ

Find: va

If e > ( 1 - 1e−12 ) then va = 0.

Otherwise,

va =

√

µ

a

(
1 − e

1 + e

)

(4.197)

Comment : a and e are calculated from the satellite carte-
sian state as shown in Section 4.1.2, and µ is associated
with the specified central body.
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4.2.44 VelPeriapsis

Given: a, e, and µ

Find: vp

vp =

√

µ

a

(
1 + e

1 − e

)

(4.198)

Comment : a and e are calculated from the satellite carte-
sian state as shown in Section 4.1.2, and µ is associated
with the specified central body.

4.2.45 VMAG

Description: VMAG is the magnitude of the spacecraft’s ve-
locity vector, when the velocity is expressed in the chosen
coordinate system.

Dependency: Coordinate System.

Given: v and coordinate system F .

Find: v

Begin by converting v to coordinate system F if nec-
essary. Then,

v = ‖v‖ =
√

v2
x + v2

y + v2
z (4.199)

4.3 Other Calculations

4.3.1 MA to TA

Description: This algorithm shows how to calculate ν
given M and e and is taken from Vallado.1

Given: M and e.

Find: ν

The algorithm is different for elliptic and hyperbolic
orbits. Let’s first look at what happens for elliptic orbits.

Elliptic Orbit Case

If e <= 1 then use the following algorithm:

Determine initial guess for the Eccentric anomaly
If ( - π < M < 0 ) or M > π

E = M − e
Else

E = M + e
End

Iterate to determine the eccentric anomaly:

Iterate On: En+1 = En +
M − En + e sinEn

1 − e cosEn

Until: |En+1 − En| < 1e−8

Finally we convert the eccentric anomaly to the true anomaly
using the algorithm given in sec. 4.3.2

Hyperbolic Orbit Case

If e > 1 then use the following algorithm:

We begin by choosing the initial guess for the hyper-
bolic anomaly. The initial guess depends on the value of
the mean anomaly and the eccentricity:

If e < 1.6

If ( - π < M < 0 ) or M > π
H = M − e

Else
H = M + e

End

Else

If (e < 3.6 & |M | > π )
H = M − sign(M)e

Else
H = M

e−1
End

End

Iterate to determine the Hyperbolic Anomaly:

Iterate On: Hn+1 = Hn +
M +Hn − e sinhHn

e coshHn − 1
Until: |Hn+1 −Hn| < 1e−8

Convert the hyperolic anomaly to the true anomaly using
the algorithm given in sec. 4.3.3

4.3.2 EA to TA

Description: This algorithm shows how to calculate ν
given E and e and is taken from Vallado.1

Given: E and e.

Find: ν

sin ν =

√
1 − e2 sin(E)

1 − e cosE
(4.200)

cos ν =
cosE − e

1 − e cosE
(4.201)

ν = atan2(sin ν, cos ν) (4.202)
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4.3.3 HA to TA

Description: This algorithm shows how to calculate ν
given H and e and is taken from Vallado.1

Given: H and e.

Find: ν

sin ν = −
√
e2 − 1 sinh(H)

1 − e coshH
(4.203)

cos ν =
coshH − e

1 − e coshH
(4.204)

ν = atan2(sin ν, cos ν) (4.205)

4.4 Libration Points

We begin by assuming that the planets move in circu-
lar orbits about the sun, and the mass of a spacecraft is
negligible compared to the mass of the planets. For il-
lustrative purposes, lets consider the Earth and its orbit
about the Sun. In this case, the libration points are lo-
cations in space where a spacecraft will stay fixed with
respect to the Earth and Sun. Figure 4.10 shows a simple
illustration. We see the Sun, the Earth’s position with
respect to the Sun, and the Libration points L1 and L2

at two different epochs. Notice that at t1, the points L1

and L2 are on the Earth-Sun line. At a later time, t2,
although the Earth has moved with respect to the sun,
L1 and L2 still lie on the Earth-Sun line.

The preceding example gives a brief qualitative de-
scription of two of the Earth-Sun libration points. In
general, there are five libration points for a given three
body system. To determine the locations of the libration
points, it is convenient to work in a rotating coordinate
system rather than the inertial system shown in Fig. 4.10.
The system we use is constructed as follows:

• Define the primary as the heavier of the two bodies,
the secondary as the lighter.

• Define the coordinate system x-axis as the axis point-
ing from the primary to the secondary.

• Define the y-axis to be orthogonal to the x-axis in
the plane of the secondary’s motion about the pri-
mary, pointing in the direction the secondary moves
about the primary.

• Define the z-axis orthogonal to the x and y axes to
form a right-handed system.

• Place the origin at center-of-mass of the system.

This coordinates system is illustrated in Fig. 4.11.
The locations of the libration points in the rotating coor-
dinate system can be found by calculating the values of
γ that solve the following equations:

γ5
1 − (3 − µ∗) γ4

1 + (3 − 2µ∗) γ3
1 − µ∗γ2

1

+ 2µ∗γ1 − µ∗ = 0 (For L1)
(4.206)

γ5
2 + (3 − µ∗) γ4

2 + (3 − 2µ∗) γ3
2 − µ∗γ2

2

− 2µ∗γ2 − µ∗ = 0 (For L2)
(4.207)

γ5
3+ (2 + µ∗) γ4

3 + (1 + 2µ∗) γ3
3 − (1 − µ∗) γ2

3

− 2 (1 − µ∗) γ3 − (1 − µ∗) = 0 (For L3)
(4.208)

where
µ∗ =

m2

m1 +m2
(4.209)

Equations (4.206)-(4.208) do not have exact analytic
solutions.Szebehely8 notes that they are most easily solved
using an iterative method with the following as the initial
guesses:

γ1 = γ2 =

(
µ∗

3 (1 − µ∗)

)1/3
(4.210)

γ3 = 1 (4.211)

GMAT uses the Newton-Raphson method to solve for
the roots of the equations by iterating on

γ(i+ 1) = γ(i) − F (γ(i))

F ′(γ(i))
(4.212)

until the the difference |γ(i + 1) − γ(i)| < 10−8. The
derivative F ′(γ) for each libration point is shown below.

F ′(γ) = 5γ4
1 − 4 (3 − µ∗)γ3

1 + 3 (3 − 2µ∗) γ2
1

− 2µ∗γ1 + 2µ∗ (For L1)
(4.213)

F ′(γ) = 5γ4
2 + 4 (3 − µ∗)γ3

2 + 3 (3 − 2µ∗) γ2
2

− 2µ∗γ2 − 2µ∗ (For L2)
(4.214)

F ′(γ) = 5γ4
3 + 4 (2 + µ∗) γ3

3 + 3 (1 + 2µ∗) γ2
3

− 2 (1 − µ∗) γ3 − 2 (1 − µ∗) (For L3)
(4.215)

We now need to redimensionalize the results found
in the rotating system, and perform the necessary trans-
formations to obtain the results in the MJ2000 system.
Let’s assume that rs , vs, and as are the position, veloc-
ity, and acceleration vectors respectively of the secondary
body, with respect to the primary body, expressed in the
FK5 system. Then, the position of the ith libration point
can be expressed in the rotating system with the origin
centered on the primary body as

ri = rs [xi yi 0]
T

(4.216)
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Earth , L1, L2 at t1

Earth , L1, L2 at t2

Figure 4.10: Geometry of Libration Points

Table 4.7: Location of Libration Points in RLP Frame,
with the Origin at the Primary Body

Point x-Position y-Position
L1 1 − γ1 0
L2 1 + γ2 0
L3 −γ3 0

L4 1/2
√

3/2

L5 1/2 -
√

3/2

where

rs = ‖rs‖ (4.217)

The velocity of the ith libration point can be expressed
in the rotating system with the origin centered on the
primary body as

vi =
vs · rs

rs
[xi yi 0]

T
(4.218)

Now we have the redimensionalized position and velocity
vectors of the libration point in the rotating coordinate
system defined by the motion of the secondary body with
respect to the primary body. To determine the position
and velocity vectors in the FK5 system, with the origin
located at the primary body, we need to determine the
rotation matrix and its derivative as follows:

RIi =





x̂1 ŷ1 ẑ1
x̂2 ŷ2 ẑ2
x̂3 ŷ3 ẑ3



 (4.219)

and

ṘIi =





˙̂x1
˙̂y1 ˙̂z1

˙̂x2
˙̂y2 ˙̂z2

˙̂x3
˙̂y3 ˙̂z3



 (4.220)

where

x̂ =
rs

rs
(4.221)

ẑ =
rs × vs

‖rs × vs‖
(4.222)

ŷ = ẑ × x̂ (4.223)

and

˙̂x = ˙̂rs =
vs

rs
− r̂s

rs
(r̂s · vs) (4.224)

˙̂z =
rs × as

‖rs × vs‖
− ẑ

‖rs × vs‖
(rs × as · ẑ) (4.225)

˙̂y = ˙̂z × x̂ + ẑ × ˙̂x (4.226)

GMAT currently assumes that the terms rs×as are zero.

We finally arrive at the position of the Libration Point
in the FK5 system with the origin at the primary by per-
forming the calculations:

r = RIiri (4.227)

v = ṘIiri + RIivi (4.228)
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µ∗ 1 − µ∗

γ1 γ2γ3

L3 L1 L2

L4

L5

x

y

Primary Secondary

Figure 4.11: Location of Libration Points

4.5 Barycenter

The barycenter of a system of point masses, rb, is also
called the center of mass. If we have a system of n bodies,
and we know the position of the ith body with respect to
a common reference system, then we can calculate the
barycenter of the system using

rb =

n∑

i=1

miri

n∑

i=1

mi

(4.229)

Similarly, we can calculate the velocity of the barycenter
using the following equation

vb =

n∑

i=1

mivi

n∑

i=1

mi

(4.230)
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Chapter 5

Dynamics Modelling

One of the fundamental capabilities of GMAT is to
model the motion of spacecraft in many different flight
regimes. The flight regimes, such as low Earth, or Li-
bration Points, are determined by which forces and per-
turbations dominate the dynamics. In this chapter we
present how GMAT models the dynamics of spacecraft in
motion. We discuss how GMAT calculates many different
types of forces including mulitiple non-spherical gravity
perturbations, third-body effects, and atmospheric drag
among others. We being by looking at the general form
of the equations of motion.

5.1 Equations of Motion

5.1.1 Orbit State Equations

Let’s begin by defining the position and velocity of a
spacecraft with respect to the central body of integration
as rand v. From Newton’s Second Law we know that

m
d2r

d2t
=
∑

F (5.1)

which says that the mass, times the acceleration, is equal
to the sum of the forces. Solving for the acceleration gives
us the second order differential equation

d2r

d2t
=
∑ F

m
(5.2)

GMAT has the capability to model many different types
of accelerations experienced by spacecraft in orbit. If we
include all of the possible forces GMAT can model in the
summation on the left hand side of Eq. (5.2), then we
would have

d2r

dt2
= − µ

r3
r + ∇φo

sj +G

nb∑

k=1

k 6=j

mk

(

rks

r3ks

− rkj

r3kj

)

+

nb∑

k=1

k 6=j

(
∇φo

ks + ∇φo
kj

)
+
ṁs

m

dr

dt

− 1

2
ρv2

rel

CdA

ms
v̂rel +

PSRCRA⊙

ms
r̂s⊙

(5.3)

Description Term

Central Body Point Mass − µ

r3
r

Central Body Direct Nonspheri-
cal

∇φo
sj

Direct Third Body Point Mass G

nb∑

k=1

k 6=j

mk

(
rks

r3ks

)

Indirect Third Body Point Mass G

nb∑

k=1

k 6=j

mk

(

−rkj

r3kj

)

Third Body Direct Nonspherical

nb∑

k=1

k 6=j

(∇φo
ks)

Third Body Indirect Nonspheri-
cal

∑nb

k=1

k 6=j

(

∇φo
kj

)

Spacecraft Thrust
ṁs

m

dr

dt

Atmospheric Drag −1

2
ρv2

rel

CdA

ms
v̂rel

Solar Radiation Pressure
PSRCRA⊙

ms
r̂s⊙

In general, Eq. (5.3) does not have an analytic solution

57
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so GMAT uses numerical integration to find approximate,
although very accurate, solutions. GMAT uses first order
numerical integrators, so we must take the three second
order differential equations in Eq. (5.3) and convert them
to six first order equations. So, we define a new variable
x such that

x =
[
rT vT

]T
= [x y z ẋ ẏ ż]

T
(5.4)

then taking the derivative we arrive at

ẋ =
[
ṙT v̇T

]T
= [ẋ ẏ ż ẍ ÿ z̈]

T
(5.5)

5.1.2 State Transition Matrix Equations

Φ̇(t, to) = ÃΦ(t, to) (5.6)

where

Ã =
∂ẋ

∂x
(5.7)

subject to the initial conditions

Φ(to, to) = I6×6 (5.8)

If we define x as

x =

(
r
v

)

(5.9)

then

ẋ =

(
v
a

)

(5.10)

Now we can write Ã as

Ã =
∂ẋ

∂x
=







∂v

∂r

∂v

∂v

∂a

∂r

∂a

∂v







(5.11)

For convenience, lets use the following notation

A =
∂v

∂r
(5.12)

B =
∂v

∂v
(5.13)

C =
∂a

∂r
(5.14)

D =
∂a

∂v
(5.15)

5.1.3 Multiple Spacecraft Propgation and
Coupled Propagation of the Equa-
tions of Motion

5.2 Force Modelling

5.2.1 Non-Spherical Gravity

GMAT integrates all spacecraft equations of motion us-
ing the Earth’s Mean J2000 axis system. However, the
user can choose central bodies other than the Earth as
the origin of the coordinate system of integration. Grav-
itational forces are conservative and only a function of
position. To calculate the gravitational force due to a
non-spherical body, we need to determine the position of
the spacecraft in the body fixed frame FF . However, the
equations of motion are expressed in terms of the position
of the spacecraft in the inertial frame.

We know from dynamics that the acceleration in an
inertial frame can be calculated using

acb = ∇U (5.16)

where U is the gravitational potential. The potential for
a nonspherical body comes from the solution to Laplace’s
equation:

∇2U = 0 (5.17)

The solution to this equation is most easily expressed in
spherical, body-fixed coordinates because it allows for a
convenient separation of variables.

In spherical coordinates the gradient of the gravita-
tional potential is

∇U =
∂U

∂r
ur +

1

r

∂U

∂φ
uφ +

1

r cosφ

∂U

∂λ
uλ (5.18)

We see that there are two singularities in Eq. (5.18). The
first is when r = 0, which is a nonphysical case and we
will not discuss it further. The second singularity occurs
when φ = ±90◦. Pines9 developed a uniform expression
of the gravitational potential that avoids the singularity
at the poles:

U =
µ

r

[

1 +

∞∑

n=1

(
R⊗

r

)n n∑

m=0

Anm(u)[Cnmcos(mλ) cosm φ

+ Snmsin(mλ) cosm φ]

]

(5.19)

Examining this form of the potential it is easy that there
is not a singularity at the poles when taking the gradient
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in spherical coordinates. Pines rewrites Eq. (5.19) as

U =
µ

r

[

1 +

∞∑

n=1

(
R⊗

r

)n n∑

m=0

Anm(u)[Cnmrm(s, t)

+ Snmim(s, t)]

] (5.20)

where Cnm and Snm are the gravitational coefficients, s,
t, and u are given by

s = x/r, t = y/r, u = z/r = sinφ

and rm(s, t) and im(s, t) are calculated using the recursive
relationships

r0 = 1, r1 = s, i0 = 0, i1 = t

rm = srm−1 − tim−1, im = sim−1 + trm−1

The coefficients Anm(u) are called “derived” Legendre
functions and are given by

Anm(u) =
dm

dum
(Pn(u)) (5.21)

where we know from Rodrigues’10 formula that

Pn0(u) = Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n (5.22)

and

Pnm(u) = (1 − u2)m/2 d
m

dum
Pn(u) (5.23)

For numerical reasons it is useful to normalize some
of the terms in the potential function, U . By normal-
izing the spherical coefficients and the derived Legendre
polynomials we can improve the stability of recursive al-
gorithms used to calculate the Legendre polynomials and
improved numerical problems. We use the nondimension-
alization approach and described by Lundberg.10 Lund-
berg chooses the normalization factor so that the normal-
ized spherical harmonics C̄nm and S̄nm will have a mean
square value of one on the unit sphere. The normalized
Legendre functions, P̄nm, are defined so that the product
of the spherical harmonic coefficients and the correspond-
ing Legendre functions remain constant, or

P̄nmC̄nm = PnmCnm P̄nmS̄nm = PnmSnm

(5.24)
GMAT uses the normalization factor Nnm given by

Nnm =

[
(n−m)!(2n+ 1)!

(n+m)!

]1/2

(5.25)

The non-dimensional spherical harmonic coefficients and
Legendre functions are

P̄nm = NnmPnm C̄nm =
Cnm

Nnm
S̄nm =

Snm

Nnm
(5.26)

The derived Legendre polynomials are normalized using

Ānm = NnmAnm (5.27)

where Ānm are the normalized Legendre polynomials.
Lundberg10 showed that there are several recursive al-
gorithms to compute Ānm but that only two are stable.
GMAT uses the following algorithm to recursively calcu-
late the derived Legendre polynomicals

Ānm =u

[
(2n+ 1)(2n− 1)

(n−m)(n+m)

]1/2

Ān−1,m

−
[
(2n+ 1)(n−m− 1)(n+m− 1)

(2n− 3)(n+m)(n−m)

]1/2

Ān−2,m

(5.28)

The recursive algorithm is started using

Ā11 =
√

3 cosφ (5.29)

Ānn = cosφ

√

2n+ 1

2n
Ān−1,n−1 (5.30)

The above equations are normalized using Eq. (5.27) and
used in

The acceleration due to nonspherical gravity can be
written as

ag =

(
∂U

∂r
− s

r

∂U

∂s
− t

r

∂U

∂t
− u

r

∂U

∂u

)

r̂

+

(
1

r

∂U

∂s

1

r

∂U

∂t

1

r

∂U

∂u

)T (5.31)

To simplify the partial derivatives in Eq. (5.31), Pines
defines some intermediate variables as follows

ρ0 = µ/r

ρ1 = ρρ0 (5.32)

ρn = ρρn−1 for n > 1

Using Lundberg’s nondimensionalization approach, we can
write

D̄nm(s, t) = C̄nmrm(s, t) + S̄nmim(s, t)

Ēnm(s, t) = C̄nmrm−1(s, t) + S̄nmim−1(s, t)

F̄nm(s, t) = S̄nmrm−1(s, t) − C̄nmim−1(s, t)

Ḡnm(s, t) = C̄nmrm−2(s, t) + S̄nmim−2(s, t)

H̄nm(s, t) = S̄nmrm−2(s, t) − C̄nmim−2(s, t)

(5.33)

The partial derivatives in Eq. (5.31) can be written as

∂U

∂r
− s

r

∂U

∂s
− t

r

∂U

∂t
− u

r

∂U

∂u
=

−
∞∑

n=0

ρn+1

R⊗

n∑

m=0

cn+1,m+1Ān+1,m+1D̄nm

(5.34)
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1

r

∂U

∂s
=

∞∑

n=0

ρn+1

R⊗

n∑

m=0

Ānm(u)mĒnm (5.35)

1

r

∂U

∂t
=

∞∑

n=0

ρn+1

R⊗

n∑

m=0

Ānm(u)mF̄nm (5.36)

1

r

∂U

∂s
=

∞∑

n=0

ρn+1

R⊗

n∑

m=0

cn,m+1Ān,m+1(u)D̄nm (5.37)

where

cn,m+1 = [(n−m)(n+m+ 1)]
1/2

cn+1,m+1 =

[
(n+m+ 2)(n+m+ 1)

(2n+ 3)(2n+ 2)

]1/2

To calculate the nonzero portion of the sensitivity ma-
trix, we begin by calcluting the following 9 terms:

a11 =

∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

m(m− 1)ĀnmḠnm (5.38)

a12 =
∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

m(m− 1)ĀnmH̄nm (5.39)

a13 =

∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

mcn,m+1Ān,m+1Ēnm (5.40)

a14 = −
∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

mcn+1,m+1Ān+1,m+1Ēnm(5.41)

a23 =

∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

mcn,m+1Ān,m+1F̄nm (5.42)

a24 = −
∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

mcn+1,m+1Ān+1,m+1F̄nm(5.43)

a33 =

∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

cn,m+2Ān,m+2D̄nm (5.44)

a34 = −
∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

cn+1,m+2Ān+1,m+2D̄nm(5.45)

a44 =

∞∑

n=0

ρn+2

R2
⊗

n∑

m=0

cn+2,m+2Ān+2,m+2D̄nm (5.46)

where

cn+1,m+2 = cn+1,m+1 [(n−m)(n+m+ 3)]1/2

cn,m+2 = cn,m+1 [(n−m− 1)(n+m+ 2)]
1/2

cn+2,m+2 = cn+1,m+1

[
(n+m+ 4)(n+m+ 3)

(2n+ 5)(2n+ 4)

]1/2

Finally,

Cg =
∂ag

∂r
(5.47)

where Cg is a symmetric matrix with components given
by

c11 = a11 + s2a44 + a4/r + 2sa14 (5.48)

c12 = c21 = a12 + sta44 + sa24 + ta14 (5.49)

c13 = c31 = a13 + sua44 + sa34 + ua14 (5.50)

c22 = −a11 + t2a44 + a4/r + 2ta24 (5.51)

c23 = c32 = a23 + tua44 + ua24 + ta34 (5.52)

c33 = a33 + u2a44 + a4/r + 2 ∗ u ∗ a34 (5.53)

Note that

a4 =
∂U

∂r
− s

r

∂U

∂s
− t

r

∂U

∂t
− u

r

∂U

∂u
(5.54)

and is given in Eq. (5.34).

5.2.2 n-Body Point Mass Gravity

The gravitational perturbation due to n point masses is
well know. However, we will derive the governing differ-
ential equation here, as well as the componenents of the
sensitivity matrix. Let’s begin by defining some notation

referring to Fig.5.1. Assume the jth body is the central
body of the integration.

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx

x̂I

ŷI

r̃s

r
rsk

rk

r̃j

Central Body
kth Body

Figure 5.1: N-Body Illustration

• r̃s is the position of the spacecraft with respect a
hypothesized inertial frame.

• r̃j is the position of the central body with respect
a hypothesized inertial frame.

• r̃k is the position of the kth gravitational body with
respect a hypothesized inertial frame.
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• r is the position of the spacecraft with respect to
the central body of integration (jth body).

• rk is the position of the kth gravitational body with
respect to the central body.

We need the governing differential equation that de-
scribes the motion of the spacecraft with respect to the
central body. However, we know that we must apply New-
ton’s 2nd Law in an inertial frame. So, we begin by defin-
ing the relative position of the spacecraft with respect to
the central body. From inspection of Fig.5.1 we see that

r̃j + r = r̃s (5.55)

By reordering and taking the second derivative with re-
spect to time we obtain

r̈ = ¨̃rs − ¨̃rj (5.56)

We can apply Newton’s 2nd Law to the spacecraft and
obtain

ms
¨̃rs =

n∑

k=1

Fk = G

n∑

k=1

msmk

‖rk − r‖3
(rk − r) (5.57)

where (rk − r) is a vector from the spacecraft to the kth

body, ms is the mass of the spacecraft, and mk is the
mass of the kth body. We can write ¨̃rs as simply

¨̃rs = G

n∑

k=1

mk

‖rk − r‖3
(rk − r) (5.58)

We can apply Newton’s 2nd Law to the jth body and
obtain

mj
¨̃rj =

Gmsmj

r3
r +G

n∑

k=1

k 6=j

mjmk

‖rk‖3
rk (5.59)

where the first term is the influence of the spacecraft on
the central body, and the second term is the influence of
the k point mass gravitational bodies. We can write ¨̃rj

as simply

¨̃rj =
Gms

r3
r +G

n∑

k=1

k 6=j

mk

‖rk‖3
rk (5.60)

Substituting Eq. (5.58) and (5.60) into (5.56) we get

r̈ = G

n∑

k=1

mk

‖rk − r‖3
(rk − r) − Gms

r3
r −G

n∑

k=1

k 6=j

mk

‖rk‖3
rk

(5.61)
Finally, collecting terms yields

apm = r̈ = −µj

r3
r

︸ ︷︷ ︸

1

+G
n∑

k=1

k 6=j

mk







rk − r

‖rk − r‖3

︸ ︷︷ ︸

2

− rk

‖rk‖3

︸ ︷︷ ︸

3







(5.62)

We can break down the acceleration in the equation above
into three physical categories. The first term is the ac-
celeration on the spacecraft due to a point mass central
body. The second type of terms are called direct terms.
They account for the force of the kth body on the space-
craft. The third type of terms are called indirect. They
account for the force of the kth body on the central body.

Let’s look at the contributions to the sensitivity ma-
trix due to point mass perturbations. We notice that apm

is not a function of velocity. So,

Apm = Dpm = 03×3 (5.63)

We also know that

Bpm = I3×3 (5.64)

This leaves Cpm as the only non-trivial term for point
mass gravitational effects. Let’s look first at the deriva-
tives of the point mass term. We can use the vector iden-
tity in Eq. (12.4) to arrive at

∂

∂r

(

−µj

r3
r
)

= −µj

r3
I3 + 3µj

rrT

r5
(5.65)

Similarly, applying Eq. (12.4) to the direct terms we
see that

∂

∂r






n∑

k=1

k 6=j

µk
rk − r

‖rk − r‖3




 =

−
n∑

k=1

k 6=j

µk

‖rk − r‖3
I3 + 3

n∑

k=1

k 6=j

µk

(

(rk − r) (rk − r)
T

(‖rk − r) ‖5

)

(5.66)

Finally, the derivative of the indirect terms are zero and
we have

Cpm = −µj

r3
I3 + 3µj

rrT

r5
︸ ︷︷ ︸

1

−
n∑

k=1

k 6=j

µk

‖rk − r‖3
I3 + 3

n∑

k=1

k 6=j

µk

(

(rk − r) (rk − r)T

(‖rk − r) ‖5

)

︸ ︷︷ ︸

2

(5.67)

Combining similar terms we can express the result as

Cpm = −





µj

r3
+

n∑

k=1

k 6=j

µk

‖rk − r‖3




 I3

+ 3




µj

rrT

r5
+

n∑

k=1

k 6=j

µk

(

(rk − r) (rk − r)
T

(‖rk − r) ‖5

)





(5.68)
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5.2.3 Atmospheric Drag

ad = −1

2
ρv2

rel

CdA

ms
v̂rel (5.69)

where

vrel = v − ω⊗ × r (5.70)

where ω⊗ is the Earth’s angular velocity vector in the
FK5 system.

GMAT does not currently support calculating the STM
using drag. The components of the sensitivity matrix Ã
contain derivatives of the atmospheric density with re-
spect to position. These derivatives are non trivial for
most density models and are not currently included in
GMAT.

5.2.4 Solar Radiation Pressure

as = −PSR
CRA

ms
ŝ (5.71)

where ŝ is a unitized vector pointing from the spacecraft
to the sun

s = rs − r (5.72)

where rs is the Sun’s position vector and r is the space-
crafts position vector.

As = Ds = 03×3 (5.73)

Bs = I3×3 (5.74)

Cs = PSR
CRA

ms

(
1

s3
I3 − 3

ssT

s5

)

(5.75)

where

s = ‖s‖ (5.76)

5.2.5 Spacecraft Thrust

5.3 Environment Modelling

5.3.1 Celestial Body Ephemeris

5.3.2 Analytic Ephemeris Model

• For a new body, the user must input the central
body by choosing from the 9 Planets or the sun.

• The user must provide the epoch.

• The user must provide the keplerian elements, in
the central body centered, MJ2000Eq axis system.

• The user can provide a µ value for use in the solution
of the equations of motion.

The body should store the users original input for the
state and epoch, and the state and epoch calculated at
the last request for state information. Then, when the
next request is made for state information, the epoch and
state from the last request are used as the input state for
next calculation.

5.3.3 Atmospheric Density

28Kp + 0.03eKp = Ap + 100
(

1 − e(−0.08Ap)
)

(5.77)

5.3.4 Jacchia Roberts

MSISE-90

A. E. Hedin, Extension of the MSIS Thermospheric Model
into the Middle and Lower Atmosphere, J. Geophys. Res.
96, 1159, 1991.

Discuss observed vs. adjusted for F10.7 values, also
URSI Series D

For testing http://nssdc.gsfc.nasa.gov/space/model/models/msis.h

http://www.agu.org/journals/ja/ja0212/2002JA009430/
go to auxillary material on the left side menu and open
the tables-datasets.doc

Other useful models http://nssdc.gsfc.nasa.gov/space/model/

Exponential Atmosphere

Solar Radiation Pressure
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Chapter 6

Attitude

The attitude of a spacecraft can be defined qualita-
tively as how the spacecraft is oriented in inertial space,
and how that orientation changes in time. GMAT has
the ability to model the orientation and rate of rotation
of a spacecraft using several different mathematical mod-
els. Currently, GMAT assumes that a spacecraft is a rigid
body.

There are many ways to quantitatively describe the
orientation and rate of rotation of a spacecraft, just like
there are many ways we can quantitatively describe an
orbit state. Let’s define any set of numbers that can
uniquely define the spacecraft attitude as an attitude pa-
rameterization. GMAT allows the users to use several
common attitude parameterizations including quaternions,
Euler angles, the Direction Cosine Matrix (DCM), Euler
angle rates, and the angular velocity vector. Given an
initial attitude state, GMAT can propagate the attitude
using one of several kinematic attitude propagation mod-
els.

In this chapter, we discuss the attitude parameteriza-
tions supported in GMAT, and how to convert between
the different types. We discuss the internal state param-
eterization that GMAT uses. Next we investigate the
types of attitude modes in GMAT and discuss in detail
how GMAT propagates the spacecraft attitude in all of
the Kinematic attitude modes. We conclude the chapter
with a discussion of how GMAT converts between differ-
ent attitude parameterizations.

6.1 Attitude Propagation

Given a set of initial conditions that define the attitude,
GMAT can propagate the attitude using several methods.
Currently, GMAT only supports kinematic attitude prop-
agation. In Kinematic mode, the attitude is defined by
describing the desired orientation with respect to other
objects such as spacecraft or celestial bodies. With this
information, GMAT can calculate the required attitude
to satisfy the desired geometrical configuration. This sec-
tion presents the different Kinematic attitude modes, and
how GMAT calculates the attitude state in each mode.

Let’s begin by looking at the internal attitude state rep-
resentation and how the user can define initial conditions.

6.1.1 Internal State Representation and
Attitude Initial Conditions

Certain attitude parameterizations are more useful for
attitude propagation, while other attitude parameteriza-
tions are more intuitive for providing attitude initial con-
ditions or output. GMAT uses different internal param-
eterizations of the attitude orientation depending upon
the attitude mode. The type of parameterization is cho-
sen to make the attitude propagation algorithms natural
and convenient. For the kinematic modes, GMAT uses
the DCM that represents the rotation from the inertial
system to the body axes as the attitude orientation pa-
rameterization. In the future, when 6 degree of freedom
attitude modelling is implemented, GMAT will use the
quaternion that represents the rotation from the inertial
system to the body axes. GMAT uses the angular velocity
of the body with respect to the inertial frame, expressed
in the body frame, {ωIB}B, as the rate portion of the
state vector.

For convenience, the user can choose a coordinate sys-
tem in which to define the initial attitude state. Let’s
call this system Fi. The user can define the initial at-
titude orientation with respect to Fi using Euler angles,
the DCM, or quaternions. The user can define the body
rate with respect to Fi by defining the angular velocity
in Fi, {ωIB}i, or by defining the Euler angle rates. Note
that not all attitude modes require these three pieces of
information. The specific inputs for each attitude mode
are discussed below, along with details about how atti-
tude propagation is performed in each mode.

6.1.2 Kinematic Attitude Propagation

The Kinematic attitude mode allows a user to define a
geometrical configuration based on the relative position
of a spacecraft with respect to other spacecraft or celes-
tial bodies, and with respect to different coordinate sys-
tems. In Kinematic mode, GMAT does not integrate the

63



Draft: Work in Progress
64 CHAPTER 6. ATTITUDE

attitude equations of motion, but rather calculates the
attitude based on the geometrical definition provided by
the user. There are several Kinematic modes to choose
from. The different modes allow the user to conveniently
define the spacecraft attitude depending on the type of
attitude profile needed for a specific mission. To begin,
let’s look at how GMAT calculates the attitude state in
the Coordinate System Fixed attitude mode (CSFixed).

Coordinate System Fixed Mode

In the CSFixed attitude mode, the user supplies two pieces
of information. They first specify a coordinate system in
which to fix the attitude, Fi. Fi can be any of the de-
fault coordinate systems or any user defined coordinate
system. Secondly, the user specifies how the body axis
system, FB is oriented with respect to Fi by defining
RBi or an equivalent parameterization. With this infor-
mation, GMAT calculates the rotation from the inertial
to the body axes and the angular velocity of the body
with respect to the inertial frame, expressed in the body
frame, {ωIB}B.

GMAT calculates the rotation matrix from Fi to FB,
RBi, from the initial conditions provided by the user. For
CSFixed mode, RBi is constant and is stored for use in
the equations below. Knowing RBi, we can calculate the
rotation matrix from the inertial frame to the body frame,
RBI , using the following equation

RBI = RBiRiI (6.1)

RiI is the rotation matrix from FI to Fi and GMAT
knows how to calculate this matrix for all allowable Fi.
For details on the calculation of this matrix for all coor-
dinate systems in GMAT see Ch. 3.

To calculate {ωIB}B, we start from Eulers’ equation:

ṘBI = −{ω×
IB}BRBI (6.2)

where

{ω×
IB}B =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (6.3)

and {ωIB}B is the rotation of FB with respect to FI ,
expressed in FB. Solving Eq. 6.2 for {ω×

IB}B we obtain

{ω×
IB}B = −ṘBIR

T
BI (6.4)

Taking the derivative of Eq. (6.1) with respect to time
yields

ṘBI = RBiṘiI (6.5)

because by definition, for the CSFixed mode, ṘBi = 0.
Substituting Eq. (6.5) into Eq. (6.4) we obtain

{ω×
IB}B = −RBiṘiIR

T
BI (6.6)

where RBi is known from user input, and RBI is known
from Eq. (6.1) . GMAT knows how to calculate ṘiI for
all allowable Fi and details are contained in Ch. 3.

In summary, in CSFixed mode, Eq.(6.1) is used to
calculate RBI , and Eq. (6.6) is used to calculate {ωIB}B.
If another attitude parameterization is required, GMAT
uses the algorithms in Sec. 6.2 to transform from RBI

and {ωIB}B to the required parameterization. Now let’s
look at the spinning spacecraft mode.

Spinning Spacecraft Mode

In spinnning spacecraft mode, GMAT propagates the at-
titude by assuming the spin axis direction is fixed in in-
ertial space. The spacecraft attitude at some time, t, is
determined from the attitude initial conditions, the angu-
lar velocity vector, and the elapsed time from the initial
spacecraft epoch. Let’s take a closer look at the calcula-
tions.

In the spinning spacecraft mode, the user provides
three pieces of information. They first choose a coordi-
nate system, Fi, in which to define the initial conditions.
Secondly, they define the initial orientation with respect
to Fi by providing RBi or an equivalent parameterzation
that is then converted to the DCM. The user also pro-
vides the angular velocity of the body axes with respect
to the inertial axes expressed in Fi, {ωIB}i.

To calculate RBI(t) where t is an arbitrary epoch, we
begin by calculating RBoI where RBoI = RBI(to). We
calculate RBoI using

RBoI = RBiRiI(to) (6.7)

where RBi comes from user provided data, and RiI(to)
is calculated by GMAT and is dependent upon Fi. See
Ch. 3 for details on how GMAT calculates RiI for all
allowable coordinate systems in GMAT.

Before calculating RBI(t) we must determine the spin
axis in the body frame, {ωIB}B. The user provides {ωIB}i.
In spinning mode we assume the spin axis direction is con-
stant in inertial space and in the body frame so {ωIB}B(t)
= {ωIB}B(to) = {ωIB}B. We can find the spin axis in
the body frame using RBi as follows

{ωIB}B = RBi{ωIB}i (6.8)

Once calculated, GMAT saves RBoI and {ωIB}B for use
in calculating the attitude orientation and rate at other
epochs.

GMAT calculates RBI(t) using the Euler axis/angle
rotation algorithm in Sec. 6.2. The Euler axis is simply
the unitized angular velocity vector or,

a =
{ωIB}B

ωIB
(6.9)
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where

ωIB = ‖{ωIB}B‖ (6.10)

The Euler angle φ is calculated using

φ(t) = ωIB(t− to) (6.11)

where t is the current epoch, and to is the spacecraft’s
initial epoch. Let’s define the rotation matrix that results
from the Euler axis/angle rotation using a and φ(t), as
RBBo

(t). We can calculate RBI(t) using

RBI(t) = RBBo
(t)RBoI (6.12)

To summarize, in spinning mode the user provides
RBi and {ωIB}i. GMAT assumes that that the spin
axis direction is constant, and uses the Euler axis/angle
method to propagate the attitude to find RBI .

Now let’s look at how GMAT performs conversions
between the different attitude parameterizations.

6.2 Attitude Parameterizations
and Conversions

This section details how GMAT converts between differ-
ent attitude parameterizations. For each conversion type,
any singularities that may occur are addressed. The ori-
entation parameterizations in GMAT include the DCM,
Euler Angles, quaternions, and Euler axis/angle. The
body rate parameterizations include Euler angle rates and
angular velocity. We begin with the algorithm to trans-
form from the quaternions to the DCM.

6.2.1 Conversion: Quaternions to DCM

Given: q, q4

Find: R

Name: ToCosineMatrix

q = (q1 q2 q3)
T

(6.13)

q× =





0 −q3 q2
q3 0 −q1
−q2 q1 0



 (6.14)

c =
1

q21 + q22 + q23 + q24
(6.15)

R = c
[
(q24 − qT q)I3 + 2qqT − 2q4q

×
]

(6.16)

6.2.2 Conversion: DCM to Quaternions

Given: R

Find: q, q4

Define following vector

v = [R11 R22 R33 trace(R) ] (6.17)

Define im as the index of the maximum component of v

if im = 1

q′′ =







2vim
+ 1 − trace(R)
R12 +R21

R13 +R31

R23 −R32







(6.18)

if im = 2

q′′ =







R21 +R12

2vim
+ 1 − trace(R)
R23 +R32

R31 −R13







(6.19)

if im = 3

q′′ =







R31 +R13

R32 +R23

2vim
+ 1 − trace(R)
R12 −R21







(6.20)

if im = 4

q′′ =







R23 −R32

R31 −R13

R12 −R21

1 + trace(R)







(6.21)

We normalize q′′ using

q′ =
q′′

‖q′′‖ (6.22)

Finally,

q = [ q′1 q′2 q′3 ]T (6.23)

and

q4 = q′4 (6.24)

6.2.3 Conversion: DCM to Euler
Axis/Angle

Given: R

Find: a, φ

R =





R11 R12 R13

R21 R22 R23

R31 R32 R33



 (6.25)

φ = cos−1

(
1

2
(trace(R) − 1)

)

(6.26)
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a =
1

2 sinφ





R23 −R32

R31 −R13

R12 −R21



 (6.27)

If ‖ sinφ‖ < 10−14, then we assume

a = [ 1 0 0 ]T (6.28)

Note that if ‖ sinφ‖ < 10−14 then cosφ ≈ 1 and we arrive
at a DCM of I3.

6.2.4 Conversion: Euler Axis/Angle to
DCM

Given: a, φ

Find: R

a× =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 (6.29)

R = cosφI3 + (1 − cosφ)aaT − sinφa× (6.30)

6.2.5 Conversion: Euler Angles to DCM

Given: Sequence order ( i.e. 123, 121, .... 313), θ1, θ2, θ3

Find: R

We’ll give an example for a 321 rotation, and then
present results for the remaining 11 Euler angle sequences.
First, let’s define R3(θ1), R2(θ2), and R1(θ3).

R3(θ1) =





cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1



 (6.31)

R2(θ2) =





cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2



 (6.32)

R1(θ3) =





1 0 0
0 cos θ3 sin θ3
0 − sin θ3 cos θ3



 (6.33)

Now we can write

R321 = R1(θ3)R2(θ2)R3(θ1) =

=





1 0 0
0 c3 s3
0 −s3 c3









c2 0 −s2
0 1 0
s2 0 c2









c1 s1 0
−s1 c1 0
0 0 1





(6.34)

where c1 = cos θ1, s1 = sin θ1 etc. We can rewrite R321

as

R321 =





c2c1 c2s1 −s2
−c3s1 + s3s2c1 c3c1 + s3s2s1 s3c2
s3s1 + c3s2c1 −s3c1 + c3s2s1 c3c2





(6.35)

The approach is similar for the remaining 11 Euler
angle sequences. Rather than derive the DCM matrices
for the remaining 11 sequences, we present them in Table
6.1.

6.2.6 Conversion: DCM to Euler Angles

Given: Sequence order ( i.e. 123, 121, .... 313), R

Find: θ1, θ2, θ3

We’ll give an example for a 321 rotation, and then
present results for the remaining 11 Euler angle sequences.
Examining, Eq. (6.35), we see that

R21

R11
=

cos θ2 sin θ1
cos θ2 cos θ1

(6.36)

From this we can see that

θ1 = tan−1 R21

R11
(6.37)

Further inspection of Eq. (6.35) shows us that

θ2 = sin−1R13 (6.38)

At first glance, we may choose to calculate θ3 using θ3 =
tan−1 (R23/R33). However, in the case that θ2 = 90◦, this
would result in the indeterminate case, θ3 = tan−1(R23/R33)
= tan−1(0/0). An improved method, found in the ADEAS
mathematical specifications document, is to determine θ3
using

θ3 = tan−1

(
R31 sin θ1 −R32 cos θ1
−R21 sin θ1 +R22 cos θ1

)

(6.39)

Substituting values from Eq. (6.35) into Eq. (6.39), and
using abbreviated notation, we see that

θ3 = tan−1

(
s1(s3s1 + c3s2c1) − c1(−s3c1 + c3s2s1)

s1(c3s1 − s3s2c1) + c1(c3c1 + s3s2s1)

)

(6.40)
Now, if θ2 = 90◦, and we substitute c2 = 0 and s2 = 1
into the above equation, we see we get a determinate form.
Results for all twelve Euler Sequences are shown in Table
6.3.

Note: All tan−1 use a quadrant check ( equaivalent to
atan2 ) to make sure the the correct quadrant is chosen.

6.2.7 Conversion: Angular Velocity to
Euler Angles Rates

Given: Sequence ( i.e. 123, 121, .... 313), θ2, θ3 ω

Find: θ̇1, θ̇2, θ̇3




θ̇1
θ̇2
θ̇3



 = S−1(θ2, θ3)ω (6.41)
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S−1(θ2, θ3) is dependent upon the Euler sequence. Table
6.2 contains the different expressions for S−1(θ2, θ3) for
each of the 12 unique Euler sequences.

Note: Each of the forms of S−1 have a possible singu-
larity due to the appearance of either sin θ2 or cos θ2 in
the denominator. If GMAT encounters a singularity, an
error message is thrown, and the zero vector is returned.

6.2.8 Conversion: Euler Angles Rates to
Angular Velocity

Given: Sequence ( i.e. 123, 121, .... 313), θ2, θ3, θ̇1, θ̇2,
θ̇3

Find: ω

ω = S(θ2, θ3)





θ̇1
θ̇2
θ̇3



 (6.42)

S(θ2, θ3) is dependent upon the Euler sequence. Table 6.2
contains the different expressions for S−1(θ2, θ3) for each
of the 12 unique Euler sequences.

6.2.9 Conversion: Quaternions to Euler
Angles

Given: q, q4, Euler Sequence

Find: θ1, θ2, and θ3

There is not a direct transformation to convert from
the quaternions to the Euler Angles. GMAT first converts
from the quaternion to the DCM using the algorithm in
Sec. 6.2.1. The DCM is then used to calculate the Eu-
ler Angles for the given Euler angle sequence using the
algorithm in Sec. 6.2.6.

6.2.10 Conversion: Euler Angles to Quater-
nions

Given: θ1, θ2, and θ3, Euler Sequence

Find: q, q4

There is not a direct transformation to convert from
Euler Angles to quaternions. GMAT first converts from
the Euler Angles to the DCM using the algorithm in Sec.
6.2.5. The DCM is then used to calculate the quaternions
using the algorithm in Sec. 6.2.2.

6.3 Appendix 1
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Table 6.1: Rotation Matrices for 12 Unique Euler Angle Rotation Sequences

R3(θ3)R2(θ2)R1(θ1) =





c3c2 c3s2s1 + s3c1 −c3s2c1 + s1s3
−s3c2 −s3s2s1 + c3c1 s3s2c1 + c3s1
s2 −c2s1 c2c1





R2(θ3)R3(θ2)R1(θ1) =





c3c2 c3s2c1 + s1s3 c3s2s1 − s3c1
−s2 c2c1 c2s1
s3c2 s3s2c1 − c3s1 s3s2s1 + c3c1





R1(θ3)R3(θ2)R2(θ1) =





c2c1 s2 −c2s1
−c3s2c1 + s3s1 c3c2 c3s2s1 + s3c1
s3s2c1 + c3s1 −s3c2 −s3s2s1 + c3c1





R3(θ3)R1(θ2)R2(θ1) =





c3c1 + s3s2s1 s3c2 −c3s1 + s3s2c1
−s3c1 + c3s2s1 c3c2 s3s1 + c3s2c1

c2s1 −s2 c2c1





R2(θ3)R1(θ2)R3(θ1) =





c3c1 − s3s2s1 c3s1 + s3s2c1 −s3c2
−c2s1 c2c1 s2

s3c1 + c3s2s1 s3s1 − c3s2c1 c3c2





R1(θ3)R2(θ2)R3(θ1) =





c2c1 c2s1 −s2
−c3s1 + s3s2c1 c3c1 + s3s2s1 s3c2
s3s1 + c3s2c1 −s3c1 + c3s2s1 c3c2





R1(θ3)R2(θ2)R1(θ1) =





c2 s2s1 −s2c1
s3s2 c3c1 − s3c2s1 c3s1 + s3c2c1
c3s2 −s3c1 − c3c2s1 −s3s1 + c3c2c1





R1(θ3)R3(θ2)R1(θ1) =





c2 s2c1 s2s1
−c3s2 c3c2c1 − s3s1 c3c2s1 + s3c1
s3s2 −s3c2c1 − c3s1 −s3c2s1 + c3c1





R2(θ3)R1(θ2)R2(θ1) =





c3c1 − s3c2s1 s3s2 −c3s1 − s3c2c1
s2s1 c2 s2c1

s3c1 + c3c2s1 −c3s2 −s3s1 + c3c2c1





R2(θ3)R3(θ2)R2(θ1) =





c3c2c1 − s3s1 c3s2 −c3c2s1 − s3c1
−s2c1 c2 s2s1

s3c2c1 + c3s1 s3s2 −s3c2s1 + c3c1





R3(θ3)R1(θ2)R3(θ1) =





c3c1 − s3c2s1 c3s1 + s3c2c1 s3s2
−s3c1 − c3c2s1 −s3s1 + c3c2c1 c3s2

s2s1 −s2c1 c2





R3(θ3)R2(θ2)R3(θ1) =





c3c2c1 − s3s1 c3c2s1 + s3c1 −c3s2
−s3c2c1 − c3s1 −s3c2s1 + c3c1 s3s2

s2c1 s2s1 c2
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Table 6.2: Kinematics of Euler Angle Rotation Sequences

Euler Sequence S(θ2, θ3) S−1(θ2, θ3)

R3(θ3)R2(θ2)R1(θ1)





c3c2 s3 0
−s3c2 c3 0
s2 0 1









c3/c2 −s3/c2 0
s3 c3 0

−s2c3/c2 s3s2/c2 1





R2(θ3)R3(θ2)R1(θ1)





c3c2 −s3 0
−s2 0 1
s3c2 c3 0









c3/c2 0 s3/c2
−s3 0 c3

s2c3/c2 1 s3s2/c2





R1(θ3)R3(θ2)R2(θ1)





s2 0 1
c3c2 s3 0
−s3c2 c3 0









0 c3/c2 −s3/c2
0 s3 c3
1 −s2c3/c2 s3s2/c2





R3(θ3)R1(θ2)R2(θ1)





s3c2 c3 0
c3c2 −s3 0
−s2 0 1









s3/c2 c3/c2 0
c3 −s3 0

s3s2/c2 s2c3/c2 1





R2(θ3)R1(θ2)R3(θ1)





−s3c2 c3 0
s2 0 1
c3c2 s3 0









−s3/c2 0 c3/c2
c3 0 s3

s3s2/c2 1 −s2c3/c2





R1(θ3)R2(θ2)R3(θ1)





−s2 0 1
s3c2 c3 0
c3c2 −s3 0









0 s3/c2 c3/c2
0 c3 −s3
1 s3s2/c2 s2c3/c2





R1(θ3)R2(θ2)R1(θ1)





c2 0 1
s3s2 c3 0
c3s2 −s3 0









0 s3/s2 c3/s2
0 c3 −s3
1 −s3c2/s2 −c3c2/s2





R1(θ3)R3(θ2)R1(θ1)





c2 0 1
−c3s2 s3 0
s3s2 c3 0









0 −c3/s2 s3/s2
0 s3 c3
1 c3c2/s2 −s3c2/s2





R2(θ3)R1(θ2)R2(θ1)





s3s2 c3 0
c2 0 1

−c3s2 s3 0









s3/s2 0 −c3/s2
c3 0 s3

−s3c2/s2 1 c3c2/s2





R2(θ3)R3(θ2)R2(θ1)





c3s2 −s3 0
c2 0 1
s3s2 c3 0









c3/s2 0 s3/s2
−s3 0 c3

−c3c2/s2 1 −s3c2/s2





R3(θ3)R1(θ2)R3(θ1)





s3s2 c3 0
c3s2 −s3 0
c2 0 1









s3/s2 c3/s2 0
c3 −s3 0

−s3c2/s2 −c3c2/s2 1





R3(θ3)R2(θ2)R3(θ1)





−c3s2 s3 0
s3s2 c3 0
c2 0 1









−c3/s2 s3/s2 0
s3 c3 0

c3c2/s2 −s3c2/s2 1
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Table 6.3: Computation of Euler Angles from DCM

Euler Sequence Euler Angle Computations

R3(θ3)R2(θ2)R1(θ1) θ1 = tan−1(−R32/R33) θ2 = sin−1(R31) θ3 = tan−1

(
R13 sin θ1 +R12 cos θ1
R23 sin θ1 +R22 cos θ1

)

R2(θ3)R3(θ2)R1(θ1) θ1 = tan−1(R23/R22) θ2 = sin−1(−R21) θ3 = tan−1

(
R12 sin θ1 −R13 cos θ1
−R32 sin θ1 +R33 cos θ1

)

R1(θ3)R3(θ2)R2(θ1) θ1 = tan−1(−R13/R11) θ2 = sin−1(R12) θ3 = tan−1

(
R21 sin θ1 +R23 cos θ1
R31 sin θ1 +R33 cos θ1

)

R3(θ3)R1(θ2)R2(θ1) θ1 = tan−1(R31/R33) θ2 = sin−1(−R32) θ3 = tan−1

(
R23 sin θ1 −R21 cos θ1
−R13 sin θ1 +R11 cos θ1

)

R2(θ3)R1(θ2)R3(θ1) θ1 = tan−1(−R21/R22) θ2 = sin−1(R23) θ3 = tan−1

(
R32 sin θ1 +R31 cos θ1
R12 sin θ1 +R11 cos θ1

)

R1(θ3)R2(θ2)R3(θ1) θ1 = tan−1(R12/R11) θ2 = sin−1(−R13) θ3 = tan−1

(
R31 sin θ1 −R32 cos θ1
−R21 sin θ1 +R22 cos θ1

)

R1(θ3)R2(θ2)R1(θ1) θ1 = tan−1(R12/(−R13)) θ2 = cos−1(R11) θ3 = tan−1

(−R33 sin θ1 −R32 cos θ1
R23 sin θ1 +R22 cos θ1

)

R1(θ3)R3(θ2)R1(θ1) θ1 = tan−1(R13/(R12)) θ2 = cos−1(R11) θ3 = tan−1

(−R22 sin θ1 +R23 cos θ1
−R32 sin θ1 +R33 cos θ1

)

R2(θ3)R1(θ2)R2(θ1) θ1 = tan−1(R21/(R23)) θ2 = cos−1(R22) θ3 = tan−1

(−R33 sin θ1 +R31 cos θ1
−R13 sin θ1 +R11 cos θ1

)

R2(θ3)R3(θ2)R2(θ1) θ1 = tan−1(R23/(−R21)) θ2 = cos−1(R22) θ3 = tan−1

(−R11 sin θ1 −R13 cos θ1
R31 sin θ1 +R33 cos θ1

)

R3(θ3)R1(θ2)R3(θ1) θ1 = tan−1(R31/(−R32)) θ2 = cos−1(R33) θ3 = tan−1

(−R22 sin θ1 −R21 cos θ1
R12 sin θ1 +R11 cos θ1

)

R3(θ3)R2(θ2)R3(θ1) θ1 = tan−1(R32/(R31)) θ2 = cos−1(R33) θ3 = tan−1

(−R11 sin θ1 +R12 cos θ1
−R21 sin θ1 +R22 cos θ1

)
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Chapter 7

Numerical Integrators

7.1 Runge-Kutta Integrators

The Runge-Kutta integration scheme is a single step method
used to solve differential equations for n coupled variables
of the form

dri

dt
= f(t, r)

(The superscript in this discussion refers to the vari-
ables; hence f i is the ith variable, and r(n) refers to all
n variables.) The method takes an integration step, h,
by breaking the interval into several stages (usually of
smaller size) and calculating estimates of the integration
result at each stage. The later stages use the results of
the earlier stages. The cumulative effect of the integra-
tion is an approximate total step δt, accurate to a given
order in the series expansion of the differential equation,
for the state variables ri(t+ δt) given the state ri(t).

The time increment for a given stage is given as a
multiple ai of the total time step desired; thus for the
ith stage the interval used for the calculation is aiδt; the
estimate of the integrated state at this stage is given by

k
(n)
i = δtf(t+ aiδt, r

(n)(t) +
i−1∑

j=1

bijk
(n)
j )

where bij contains a set of coefficients specific to the
Runge-Kutta instance being calculated. Given the results
of the stage calculations, the total integration step can
be calculated using another set of coefficients, cj and the
formula

r(n)(t+ δt) = r(n)(t) +

stages
∑

j=1

cjk
(n)
j

The error control for these propagators is implemented
by comparing the results of two different orders of inte-
gration. The difference between the two steps provides an

estimate of the accuracy of the step; a second set of coef-
ficients corresponding to this second integration scheme
can be used to obtain a solution

r′(n)(t+ δt) = r(n)(t) +

stages
∑

j=1

c∗jk
∗(n)
j

With care, the stage estimates kj and k∗j can be se-
lected so that they are the same; in that case, the estimate
of the error in the integration ∆(n) can be written

∆(n) =

∣
∣
∣
∣
∣
∣

stages
∑

j=1

(cj − c∗j )k
(n)
j

∣
∣
∣
∣
∣
∣

(The difference between the coefficients cj − c∗j is the
array of error estimate coefficients (ee) in this code.)

Once the estimated error has been calculated, the size
of the integration step can be adapted to a size more ap-
propriate to the desired accuracy of the integration. If
the step results in a solution that is not accurate enough,
the step needs to be recalculated with a smaller step size.
Labeling the desired accuracy α and the obtained accu-
racy ǫ (calculated, for instance, as the largest element
of the array ∆), the new step used by the Runge-Kutta
integrator is

δtnew = σδt
(α

ǫ

)1/(m−1)

where m is the order of truncation of the series ex-
pansion of the differential equations being solved. The
factor σ is a safety factor incorporated into the calcula-
tion to avoid unnecessary iteration over attempted steps.
Common practice is to set this factor to 0.9; that is the
default value used in this implementation.

Similarly, if the step taken does not result in the de-
sired accuracy, you may want to increase the step size
parameter for the next integration step. The new esti-
mate for the desired stepsize is given by

71
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δtnew = σδt
(α

ǫ

)1/(m)

Sometimes you do not want to increase the stepsize
in this manner; for example, you may want to keep the
maximum step taken at some fixed value. This implemen-
tation provides a mechanism for specifying a maximum
allowed step.

Sometimes it is convenient to request steps of a spec-
ified size, regardless of the stepsize control algorithm or
the calculation of the ”best step” described above. This
implementation accomplishes that task by taking multi-
ple error controlled steps is necessary to step across the
requested interval.

Both of these features are implemented using the boolean
flags described in the base class for the integrators. See
the documentation for the Integrator (p. ??) class for
more information about these flags.

7.1.1 Constructor & Destructor Documen-
tation

RungeKutta::RungeKutta (int st, int order)

Provides the greatest relative error in the state vector.

This method takes the state vector and calculates the
error in each component. The error is then divided by
the change in the component. The function returns the
largest of the resulting relative errors.

Override this method if you want a different error es-
timate for the stepsize control. For example, we are using

errori =

(
∆i(t+ δt)

ri(t+ δt) − ri(t)

)

Another popular approach is to divide the estimated
error ∆i by the norm of the corresponding 3-vector; for
instance, divide the error in x by the magnitude of the
displacement in position for the step.

7.2 Prince-Dormand Integrators

7.3 Adams Bashforth Moulton

Implementation of the Adams-Bashford-Moulton Predictor-
Corrector.

This code implements a fourth-order Adams-Bashford
predictor / Adams-Moulton corrector pair to integrate a

set of first order differential equations. The algorithm is
found at http://chemical.caeds.eng.uml.edu/onlinec/white/mat
or in Bate, Mueller and White, pp. 415-417.

The predictor step extrapolates the next state ri+1 of
the variables using the the derivative information (f) at
the current state and three previous states of the vari-
ables, by applying the equation

r∗j
i+1 = rj

i +
h

24

[

55f j
n − 59f j

n−1 + 37f j
n−2 − 9f j

n−3

]

The corrector uses derivative information evaluated
for this state, along with the derivative information at
the original state and two preceding states, to tune this
state, giving the final, corrected state:

rj
i+1 = rj

i +
h

24

[

9f∗j
n+1 + 19f j

n − 5f j
n−1 + 1f j

n−2

]

Bate, Mueller and White give the estimated accuracy
of this solution to be

ee =
19

270

∣
∣
∣r

∗j
i+1 − rj

i+1

∣
∣
∣

Method used to fire the step refinement (the corrector
phase).

7.4 Bulirsch-Stoer

7.5 Stopping Condition Algorithm

7.6 Integrator Coefficients
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Table 7.1: Prince-Dormand 45 Coefficients
ai bij

0 0

2
9

2
9 0

1
3

1
12

1
4 0

5
9

55
324 − 25

108
50
81 0

2
3

83
330 − 13

22
61
66

9
110 0

1 − 19
28

9
4

1
7 − 27

7
22
7 0

1 19
200 0 3

5 − 243
400

33
40

7
80 0

cj
19
200 0 3

5 − 243
400

33
40

7
80 0

ej
19
200 - 431

5000 0 3
5 - 333

500 − 243
400 + 7857

10000
33
40 - 957

1000
7
80 - 193

2000
1
50

Table 7.2: Prince-Dormand 56 Coefficients (Warning: There is an error in the original source for these and we have
not found the correct coefficients yet!!)

ai bij

0 0

1
10

1
10 0

2
9 − 2

81
20
81 0

3
7

615
1372 − 270

343
1053
1372 0

3
5

3243
5500 − 54

55
50949
71500

4998
17875 0

4
5 − 26492

37125
72
55

2808
23375 − 24206

37125
338
495 0

1 5561
2376 − 35

11 − 24117
31603

899983
200772 − 5225

1836
3925
4056 0

1 465467
266112 − 2945

1232
10513573
3212352 − 5610201

14158144 − 424325
205632

376225
454272 0 0

cj
61
864 0 98415

321776
16807
146016

1375
7344

1375
5408 − 37

1120
1
10

ej
61
864 - 821

10800 0 98415
321776 - 19683

71825
16807
146016 - 175273

912600
1375
7344 - 395

3672
1375
5408 - 785

2704 − 37
1120 - 3

50
1
10
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Table 7.3: Runge-Kutta-Fehlberg 56 Coefficients
ai bij

0 0

1
6

1
6 0

4
15

4
75

16
75 0

2
3

5
6 − 8

3
5
2 0

4
5 − 8

5
144
25 -4 16

25 0

1 361
320 − 18

5
407
128 − 11

80
55
128 0

0 − 11
640 0 11

256 − 11
160

11
256 0 0

1 93
640 − 18

5
803
256 − 11

160
99
256 0 1 0

cj
7

1408 0 1125
2816

9
32

125
768 0 5

66
5
66

ej
7

1408 - 31
384 0 0 0 0 − 5

66
5
66

5
66
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Chapter 8

Mathematics in GMAT Scripting

8.1 Basic Operators

8.2 Math Functions

8.2.1 max

[maxX] = max(X)

X is an nxm array. maxX is a 1xm row vector contain-
ing the maximum value in each column of X.

8.2.2 min

[minX] = min(X)

X is an nxm array. minX is a 1xm array containing the
minumum value contained in each row of X.

8.2.3 abs

[absX] = abs(X)

X is an nxm array. absX is a nxm array where each
component is the absolute value of the corresponding
component of X.

8.2.4 mean

[meanX] = mean(X)

X is an nxm array. meanX is a 1xm row vector con-
taining the mean of each column of X.

8.2.5 dot

[dotp] = dot(vec1,vec2)

The dot function calculates the dot (scalar) product
of two vectors. vec1 and vec2 must both be vectors with

the same length. dotp is the scalar product.

8.2.6 cross

[crossp] = cross(vec1,vec2)

The cross function calculates the cross product of
two vectors. vec1 and vec2 must both be vectors with
the same length. crossp is the cross product.

8.2.7 norm

[normv] = norm(vec)

The norm function calculates the 2-norm of a vector.
vec must both be a vector. normv is the root-sum-square
of the components of vec.

8.2.8 det

[detX] = norm(X)

The det function calculates the determinant of a ma-
trix. X is an nxn array. detX is the determinant of X.

8.2.9 inv

[invX] = inv(X)

The inv function returns the inverse of a matrix. X

must be a square matrix.
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8.2.10 eig

8.2.11 sin, cos, tan

8.2.12 asin, acos, atan, atan2

8.2.13 sinh, cosh, tanh

8.2.14 asinh, acosh, atanh

8.2.15 transpose

8.2.16 DegToRad

8.2.17 RadToDeg

8.2.18 log

8.2.19 log10

8.2.20 exp

8.2.21 sqrt
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Chapter 9

Solvers

9.1 Differential Correction

9.2 Broyden’s Method

9.3 Newton’s Method

9.4 Matlab fmincon

The user first creates a solver and names it. An example
is

Create fminconOptimizer SPQfmincon

The user creates an optimization sequence by issuing
an optimize command, followed by the name of the opti-
mizer to use

Optimize SQPfmincon

EndOptimize

9.5 The Vary Command

The user defines the independent variables by the vary
command,

Table 9.1: Available Commands in an fmincon Loop
Value Command

Xi Vary

Upper Bound on Xi Vary

Lower Bound on Xi Vary

Nondimensionalization
Factor 1

Vary

Nondimensionalization
Factor 2

Vary

Nonlinear constraint
function

NonLinearConstraint

Linear constraint func-
tion

LinearConstraint

Cost Function OptimizerName.Cost =

77
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Chapter 10

Event Functions

Event functions in GMAT allow a user to determine
when different types of events occur such as station con-
tacts, eclipse events, or spacecraft-to-spacecraft line of
sight. In general, these events are dependent upon the
orbit state and other time dependent parameters, and
therefore can only be determined during or after orbit
propagation. The implementation of Event Functions re-
quires GMAT to find the roots of a parametric function of
time. The roots of the parametric equation are the event
times.

In this chapter, we’ll look at how GMAT calculates
the roots of Event Functions. For the implementation
in GMAT, this includes two subproblems. The first is
determining if a root has occurred during a propagation
step. The second, is determining the numerical value of
the root. There is a trade between robustness and perfor-
mance, so we’ll look at several options provided in GMAT
that allow the user to select between a more robust yet
slower approach, or a fast but less robust approach. Let’s
begin my looking at the mathematical definition of an
event function in GMAT.

10.1 Event Function Mathemati-

cal Definition

An Event Function in GMAT has three outputs. The
general form of an Event Function is

[ f ,d,p ] = F(t,x(t),C) (10.1)

where t is the current time, x(t) is a vector of time de-
pendent parameters such as spacecraft states, and C is a
vector of constants. f is vector of function values at t, d
is a vector describing the or sign change we wish to track
that occurs at the root, and p is a vector that tells GMAT
whether a root is possible or not. Let’s talk about some
of the output variables in more detail.

For efficiency and convenience, the user can calculate
several different function values, f , inside of a single event
function, F. This is useful when several functions require
similar yet expensive calculations. GMAT allows the user

to pass back a vector of function values in the output
parameter f , where the components of f are simply the
values of the different functions f , or

f = [ f1(t,x(t),C), f2(t,x(t),C)...fn(t,x(t),C) ]T

(10.2)
The output parameter d allows the user to define which
type of roots for GMAT to calculate. For example, in
some cases we might only be interested in roots that oc-
cur when the function changes from a negative value to a
positive value. In other situations we may only be inter-
ested in roots that occur when the function passes from
positive to negative. Finally, we may be interested in both
types of roots. d is a vector that has the same number of
elements as f , and the first element of d corresponds to
the first element of f and so on. Table 10.1 summarizes
the allowable choices for components of d and the action
GMAT will take depending upon the selection.

Table 10.1: Allowable Values for d in Event Function
Output
Value Action

d = 1 Find roots when the function is moving in
the positive direction.

d = -1 Find roots when the function is moving in
the negative direction.

d = 2 Find both types of roots

The last output variable in the Event Function output,
p, is a flag that allows the user to tell GMAT whether or
not a root is possible. If a component of p is zero, then
GMAT will not attempt to try to find a root of the corre-
sponding function in f . This flag is included to improve
the efficiency of the algorithm. It is often possible to per-
form a few simple calculations to determine if a root is
possible or not. For example, let’s assume an event func-
tion is written to track Earth shadow crossings and that
the function is positive when a spacecraft is not in Earth’s
shadow, and negative when it is in Earth shadow. It is a
relatively simple calculation to determine if a spacecraft
is on the day-side of Earth by taking the dot product of
the Sun vector and the spacecraft’s position vector. If the
quantity is positive, there is no need to continue calculat-
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ing the actual function value.

Now that we’ve looked at the definitions of the inputs
and outputs of an Event Function, let’s look at some dif-
ferent approaches to finding the roots of an event func-
tion.

10.2 Issues in Locating Zero Cross-
ings

Before discussing the practical issues in finding roots of
Event Functions, let’s take a look at a hypothetical func-
tion to illustrate some of the issues that must be ad-
dressed. Figure 10.1 shows a sample event function. The
smooth line represents the locus of points of the function
itself, and the large “X” marks represent the function
values at the integration time steps. The smaller tick
marks indicate the function values at the internal inte-
grator stages, which may be available if we use a dense
output numerical integrator.

In general, we don’t have continuous time expressions
for the inputs to event functions. We only know the in-
puts to Event Functions at discrete points in time, so we
only know the Event Function values at discrete points
in time. Since these discrete times come from the nu-
merical integration of a differential equation, we can only
calculate Event Function values at the integration time
steps, or at the internal stages if the information is avail-
able. This fact can cause a significant problem because an
Event Function may vary rapidly and the discrete times
at which we know the Event Function may not give an
accurate picture of the function.

Let’s consider a few ways in which we can determine
if a root has occurred, given a set of times and Event
Function values. The most obvious method is to sim-
ply look for sign changes in the function values. If the
function changes sign, then we know we have bracketed
a root. This approach will incorrectly conclude that a
zero crossing did not occur, if there is an even number
of zero crossings between two function values. Another
approach is to fit a polynomial through the data, and see
if the polynomial has any real roots. While this approach
may be more accurate than looking for sign changes in
some cases, it still does not guarantee a zero crossing is
missed. A third approach might be to force the integra-
tor to select step sizes based on the rate of change of
the Event Function. We will not investigate this method
further here though.

In short, there is no way to guarantee that a root
crossing is missed. However, by having an understanding
of the Event Function, having control over the maximum
integration step size, and having access to the internal
integrator stages when using a dense output integrator,

we can do a acceptably good job determining when zero-
crossings occur. Once a zero-crossing is identified, there
are well known ways to calculate the actual root value.

F = F(t,x(t),C) (10.3)

We want to find all t such that

F(t,x(t),C) = 0 (10.4)

10.3 Root Finding Options in GMAT

In implementing a root finding approach, we need to bal-
ance accuracy and the need to find every root, with speed
and performance. One way to do this is to allow the user
to select between different approaches depending upon
the accuracy needed for a particular application. The user
has several controls to tell GMAT how to determine if a
zero crossing has occurred, and how to calculate the nu-
merical value of a root if one has been detected. Let’s look
at the choices implemented in GMAT, and discuss some
options that can be included if a more robust method is
required.

The first group of controls available to the user are
related to how or if GMAT tries to determine if a root
has occurred. The user can provide a flag in the output
of an Event Function that tells GMAT whether it is pos-
sible that a root has occurred during the last integration
step. This flag is notated as p and is discussed in section
10.1. If an element of p is zero, then GMAT will not use
more sophisticated and therefore more computationally
intensive methods to determine if a zero crossing for the
particular component of the event function has occurred.
p can be either zero or one, and can change value during
propagation. If p changes from zero to one, GMAT be-
gins using a root checking method specified by the user
to determine if a zero crossing has occurred, and begins
storing function data in case it is needed to interpolate a
root location.

The second control that determines if a zero crossing
has occurred is called RootCheckMethod in the GMAT
script language. There are several RootCheckMethod
options available and the user can currently select be-
tween FunctionSignChange and PolynomialFit. If the
user selects FunctionSignChange, then GMAT looks for
sign changes in the function output to determine if a zero
crossing has occurred. If the user selects PolynomialFit,
then GMAT fits a polynomial to the Event Function data,
and checks to see if the polynomial has any real roots.
If the polynomial has real roots, then a zero crossing
has occurred. The type of polynomial GMAT uses in
RootCheckMethod is the same as it uses in RootFindingMethod

and is discussed in more detail below.
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Figure 10.1: Sample Event Function Output

If a zero crossing is detected, there are many ways
to determine the numerical value of the root. The user
can select between the different methods by using the
RootSolvingMethod option. The two methods currently
implemented in GMAT are called QuadraticPolynomial

and CubicSpline in the GMAT script language. As the
name suggests, if the user selects QuadraticPolynomial,
then GMAT uses the last three function values to cre-
ate a quadratic polynomial. Then, the quadratic equa-
tion is used to determine the root locations. Similarly, if
the user selects CubicSpline, GMAT constructs a cubic
spline and then uses interpolation to find the root value.

Allowing the options above requires that care is taken
in designing an algorithm to track events. In the next
section we discuss some of the issues that must be ad-
dressed in the Event Function algorithm, and present a
flow chart that describes the algorithm in detail

10.4 Algorithm for Event Functions

Table 10.2: Variables in Event Function Algorithm
Variable Definition

nr Number of data points required to use the
requested RootSolvingMethod option

nc Number of data points required to use the
requested RootCheckMethod option

f A vector of function values provided by
the user defined Event Function

N The length of f , which is the number func-
tion values contained in the output of a
user defined Event Function.

d A vector of flags (length N) that defines
which type of roots to track. (negative to
positive, positive to negative, or both)

p A vector of flags (length N) that tells
whether or not a zero crossing is possi-
ble. A component of p is one if a root is
possible, otherwise it is zero.

Startup A vector of flags of lenght N . The compo-
nents of Startup correspond to the com-
ponents of f . A component of Startup is
one, if there is less than max(nr,nc) data
points saved for use in root finding. Oth-
erwise, a component of Startup is zero.
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                                                      Initialization

RootSolvingMethod = 

{Quadratic,DOQuadratic}

RootSolvingMethod = 

{CubicSpline, 

DOCubicSpline}

n_r = 3

n_r = 5

RootCheckMethod = 

Polynomial

RootCheckMethod = 

FunctionSignChangel

n_c = n_r

n_c = 2

[f,d,p] = F(t,x(t))

F(1,:) = f ’

t(1,1) = t

D(1,:) = d’

P(1,:) = p’

N = size(f)

Startup = ones(N,1)

CheckAll = ones(N,1)

True

True

True

True

False

False

False

False

Figure 10.2: Initializations for the Event Location Algorithm
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Take a step and

Update data.

                                                                                                                      Loop over the number of elements in Event Function output

Propagator Takes 

One Step

[f,d,p] = F(t,x(t))

Update F, t, and P

i = 1

i <= N

LastStep

Update Data 

Structures if 

Needed

Startup(i) = 1

i = i + 1

RootCheckMethod = 

FunctionSignChange

Check for sign 

changes in 

appropriate 

segments

Sign Change

Calculate 

Polynomial Roots 

for Appropriate 

Segments

Real Roots Update Data 

True

True

True

True

True

False

False

False

False

False

False

True

Figure 10.3: Event Location Algorithm
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10.5 Appendix 1: Root Finding Al-
gorithms

10.6 Quadratic Polynomial

We are given three data points defined by a vector of
independent variables

x = [ x1 x2 x3 ]T (10.5)

and a vector of corresponding dependent variables

y = [ y1 y2 y3 ]T (10.6)

we wish to find a quadratic polynomial that fits the data
such that

y = Ax2 +Bx+ C (10.7)

We begin by forming the system of linear equations





x2
1 x1 1
x2

2 x2 1
x2

3 x3 1









A
B
C



 =





y1
y2
y3



 (10.8)

We can solve for the coefficients using

A =

∣
∣
∣
∣
∣
∣

y1 x1 1
y2 x2 1
y3 x3 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x2
1 x1 1
x2

2 x2 1
x2

3 x3 1

∣
∣
∣
∣
∣
∣

(10.9)

B =

∣
∣
∣
∣
∣
∣

x2
1 y1 1
x2

2 y2 1
x2

3 y3 1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

x2
1 x1 1
x2

2 x2 1
x2

3 x3 1

∣
∣
∣
∣
∣
∣

(10.10)

C = y3 −Ax2
3 −Bx3 (10.11)

10.7 Cubic Spline (Not-a-Knot)

We are given five data points defined by a vector of inde-
pendent variables

x = [ x1 x2 x3 x4 x5 ]T (10.12)

and a vector of corresponding dependent variables

y = [ y1 y2 y3 y4 y5 ]T (10.13)

we wish to find the four cubic polynomials, i = 1, 2, 3, 4,
such that

pi = ai(x− xi)
3 + bi(x− xi)

2 + ci(x − xi) + di (10.14)

where the values for xi are known from the inputs.

To calculate the coefficients ai, bi, ci, and di we start
by calculating the eight quantities

hi = xi+1 − xi (10.15)

∆i =
yi+1 − yi

hi
(10.16)

Next we solve the following system of linear equations

AS = B (10.17)

where the components of A are given by

A11 = 2h2 + h1 (10.18)

A12 = 2h1 + h2 (10.19)

A13 = 0 (10.20)

A21 = 0 (10.21)

A22 = h3 + 2h4 (10.22)

A23 = 2h3 + h4 (10.23)

A31 =
h2

2

h1 + h2
(10.24)

A32 =
h1h2

(h1 + h2)
+ 2(h2 + h3) +

h3h4

(h3 + h4)
(10.25)

A33 =
h2

3

h3 + h4
(10.26)

the components of B are

B11 = 6(∆2 − ∆1) (10.27)

B21 = 6(∆4 − ∆3) (10.28)

B31 = 6(∆3 − ∆2) (10.29)

and S = [ S1 S3 S5 ]T . We can solve for the components
of S using Cramer’s Rule as follows

S1 =

∣
∣
∣
∣
∣
∣

B11 A12 A13

B21 A22 A23

B31 A32 A33

∣
∣
∣
∣
∣
∣

|A| (10.30)

S3 =

∣
∣
∣
∣
∣
∣

A11 B11 A13

A21 B21 A23

A31 B31 A33

∣
∣
∣
∣
∣
∣

|A| (10.31)

S5 =
B31 −A31S1 −A32S3

A33
(10.32)

Now we can calculate S2 and S4 using

S2 =
h2S1 + h1S3

h1 + h2
; (10.33)

S4 =
h4S3 + h3S5

h3 + h4
; (10.34)
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Finally, the coefficients for the ith cubic polynomial
are given by

ai =
Si+1 − Si

6hi
(10.35)

bi =
Si

2
(10.36)

ci =
yi+1 − yi

hi
− 2hiSi + hiSi+1

6
(10.37)

di = yi (10.38)
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Chapter 11

Spacecraft Model

11.1 Orbit

11.2 Attitude

11.3 Ballistics and Mass

11.4 Actuators

11.4.1 Thrust and Impulse Models

GMAT uses polynomial expressions for the thrust and
specific impulse imparted to the spacecraft by thrusters
attached to the spacecraft. Both thrust and specific im-
pulse are expressed as functions of pressure and temper-
ature. The pressure and temperature are values obtained
from fuel tanks containing the fuel. All measurements
in GMAT are expressed in metric units. The thrust, in
Newtons, applied by a spacecraft engine is given by

FT (P, T ) =
{
C1 + C2P + C3P

2 + C4P
C5 + C6P

C7 + C8P
C9

}
+C10C

C12P
11

}( T

Tref

)1+C13+C14P

Pressures are expressed in kilopascals, and tempera-
tures in degrees centigrade. The coefficients C1 - C14
are set by the user. Each coefficient is expressed in units
commiserate with the final expression in Newtons; for ex-
ample, C1 is expressed in Newtons, C2 in Newtons per
kilopascal, and so forth.

Specific Impulse, measured in m/s (or, equivalently,
Newton Seconds/kilogram) is expressed using a similar
equation:

Isp(P, T ) =
{

K1 +K2P +K3P
2 +K4P

K5 +K6P
K7 +K8P

K9 +K10K
K12P
11

}( T

Tref

)1+K13+K14P
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Table 11.1 shows the default values for these coeffi-
cients.

11.5 Sensors

11.6 Tanks

Mass is depleted from the fuel tanks using equation

dm

dt
=

FT

Ispg
, (11.1)

where the thrust and specific impulse are given by ?? and
11.4.1.

This mass depletion is integrated along with the other
parameters during propagation.

The tank model in GMAT manages the fuel mass and
the input variables for the thrust and specific impulse
polynomials. The tank can be run in either a blow-down
or pressure regulated mode. In pressure regulated mode,
the pressure in the polynomial is held at a fixed value. In
blow-down mode, the pressure decreases as fuel is used,
following the ideal gas law:

PV = nRT (11.2)

In GMAT’s blow-down model, the temperature T and
the number of pressurant molecules n in the tank are held
constant, so the right side of this equation is constant.
The gas volume available in the tank grows as fuel is con-
sumed, and the pressure decreases accordingly. The gas
volume VG in the tank is computed from the total tank
volume, VT , the mass of the fuel, MF , and the density of
the fuel, ρ:

VG = VT − MF

ρ
(11.3)

Table 2 shown the default values for the tank param-
eters.

Table 11.2: Default Fuel Tank Parameters

Parameter Default Value Units

FuelMass 756 kg
Pressure 1500 kPa

Temperature 20 C
RefTemperature 20 C

Volume 0.75 m3

FuelDensity 1260 kg/m3

PressureRegulated true
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Table 11.1: Default Thrust and Specific Impulse Coefficients

Thrust Coefficient Default Units Impulse Coefficient Default Units

C1 500 N K1 2150 m/s
C2 0 N/kPa K2 0 m/(s · kPa)

C3 0 N/kPa2 K3 0 m/(s · kPa
2
)

C4 0 N/kPaC5 K4 0 m/(s · kPa
K5)

C5 0 none K5 0 none

C6 0 N/kPaC7 K6 0 m/(s · kPaK7)
C7 0 none K7 0 none

C8 0 N/kPaC9 K8 0 m/(s · kPa
K9)

C9 0 none K9 0 none
C10 0 N K10 0 m/s
C11 1 none K11 1 none
C12 0 1/kPa K12 0 1/kPa
C13 0 none K13 0 none
C14 0 1/kPa K14 0 1/kPa
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Chapter 12

MathSpecAppendices

12.1 Vector Identities

∂aTa

∂x
= 2aT ∂a

∂x
(12.1)

∂a

∂x
=

∂

∂x

(
aT a

)1/2
=

aT

a

∂a

∂x
(12.2)

∂a−1

∂x
=

∂

∂x

(
aTa

)−1/2
= −aT

a3

∂a

∂x
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∂

∂x

( a

a3

)
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1

a3

∂a

∂x
− 3

aaT
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